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Abstract

Structural operational semantics (SOS) come in two main styles: big-step and small-
step. Each style has its merits and drawbacks, and it is sometimes useful to maintain
specifications in both styles. But it is both tedious and error-prone to maintain multiple
specifications of the same language. Additionally, big-step SOS has poor support for
language evolution, requires reformulation or introduction of new rules for existing
constructs as a language is extended, and is sometimes regarded as inferior for type
soundness proofs. This thesis addresses pragmatic shortcomings with giving and relat-
ing extensible small-step and big-step specifications, and with big-step type soundness
proofs.

The thesis makes a number of contributions. First, we present Extensible SOS
(XSOS), a simple but novel extension of Mosses’ Modular SOS that supports concise
and extensible specification of language features for both big-step and small-step se-
mantics. Second, we internalise the well-known refocusing transformation in XSOS to
provide a systematic transformation between extensible small-step and big-step spec-
ifications. Third, we consider types as abstract interpretations as a novel approach to
big-step type soundness. Finally, we propose a novel type system for Hindley-Milner-
Damas polymorphic type inference for a language with ML style references.
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1 Introduction

Contents
1.1 Motivation: promises and problems with formal specification . . . . 2

1.2 Background: operational semantics . . . . . . . . . . . . . . . . . . 3

1.3 Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.4 Relationship with previous publications . . . . . . . . . . . . . . . . 10

Formal semantics allow concise and precise specification of the meaning of program-
ming languages, and provide valuable tools for reasoning about them. But harnessing
the potential of formal semantics is a balancing act: a semantics must be abstract yet
comprehensible; it should facilitate both formal reasoning and experimentation; and
it must be practically maintainable as a language evolves. To date, there is no one
framework which addresses all concerns in general. In the words of Cousot and Cousot
[CC92]:

The quest for a unique general-purpose semantics for programming lan-
guages has failed. A better approach is to establish correspondences be-
tween various semantics at different levels of abstraction.

While this observation was made more than two decades ago, the words still ring true
today. Yet, we argue, there is a lack of formalisms that support giving and relating
semantics at different levels of abstraction for evolving languages.

This thesis investigates a formalism for operational semantics that supports giving
extensible programming language specifications at different levels of abstraction. The
different levels of abstraction studied in this thesis are: small-step semantics that ex-
pose the intermediate states of an underlying transition system; big-step semantics that
abstract from the intermediate states of the underlying transition system and relate
programs directly to their outcomes; and type systems, which classify the outcomes of
computations. Chapter 2 recalls state of the art techniques for giving and relating such
specifications. In this chapter, we first motivate why we believe the framework and
techniques that this thesis studies are of value, before presenting the thesis statement
and contributions in Section 1.3.
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1. Introduction

1.1 Motivation: promises and problems with formal
specification

Software is revolutionising our daily lives and society as a whole by providing the
means for making machines work for us. Programming languages are the interface
between human and machine that allows us to dictate our orders to the machine, by
writing and executing programs. But how do we ensure that programs are correct?
And, equally importantly, how do we ensure the correctness of the interpreters or com-
pilers that make our programs executable on machines?

To answer such questions, we must specify what constitutes ‘correct’ behaviour. In
some cases it is possible to exhaustively enumerate what the behaviour of a program
should be for different inputs or stimuli. But for many interesting programs and appli-
cations such exhaustive enumeration is often either infeasible or downright impossible.
The promise of formal semantics is that it provides a mathematical model that enables
precise semantic specification and supports formal reasoning about programs and pro-
gramming languages. But giving and maintaining formal specifications is challenging.

A witness to the challenges associated with formal specification is its lack of adop-
tion in specification of mainstream programming languages: semantics of most main-
stream programming languages (such as Java, C#, Haskell, F#, etc.) are specified
informally, usually by means of informal prose descriptions of the semantics of con-
structs [GJS+13, ECM06, Mar10, Sym12]. The problem with informal specification is
that it is often ambiguous and incomplete. Informal specifications also make it hard
to harness the potential of formal specifications, such as formal reasoning, or deriving
executable interpreters or compilers from the specification.

The lack of adoption of formal specification for programming language semantics
is in contrast to the state of affairs when it comes to syntax specifications, which are
commonly given using formal BNF-style grammars. Programming language designers
are not averse to this form of formal specification. Why, then, is it so rare to see
semantics specified formally for mainstream programming languages?

The Definition of Standard ML [MTHM97] is one of the few mainstream program-
ming languages whose semantics is specified formally. While The Definition of Stan-
dard ML holds an honourary place on the bookshelf of many programming language re-
searchers, it has been subject to much constructive criticism and has motivated and in-
spired subsequent research, particularly in operational semantics. For example, Harper
[HS00b], one of the authors of The Definition of Standard ML, criticises the use of
the big-step style of semantic specification. This style has pragmatic challenges when
it comes to proving type soundness [WF94, HS00b, LG09]. Another problem is that
traditional approaches to extending the semantics with certain features, such as abrupt
termination, divergence, control features, or concurrency, introduces many extra rules
for all constructs in the language [MTHM97, Cha13, HS00b, HDM93, Uus13].

There are several alternatives to the big-step style. In fact, there is a proliferation of
different approaches to formal semantics, ranging from more abstract and mathemati-
cal approaches, such as denotational semantics [SS71, Mos90, Sch86], categorical se-

2



1.2. Background: operational semantics

mantics [Mog91, TP97], game semantics [AJM00], or axiomatic semantics [Hoa69], to
more operational approaches, such as Structural Operational Semantics (SOS) [Plo04],
natural semantics [Kah87], or reduction semantics [Fel87]. This proliferation is in part
motivated by the pragmatics of working with different frameworks in different settings,
as Cousot and Cousot [CC92] observed in their quote in the introduction of this the-
sis. Winskel [Win93, Preface] echoes this observation; talking about denotational vs.
axiomatic vs. operational semantics, he writes:

It would be wrong to view these styles as in opposition to each other. They
each have their uses.

Although the observations of the Cousots and Winskel were made more than two
decades ago, there is little reason to believe that the state of affairs are different today.
Cutting edge research in formal semantics sees a prolific use of different frameworks
for different purposes. For example, CompCert [Ler06, LG09], a C-compiler which
produces machine code that provably corresponds with the semantics of the C-program
from which it is compiled, uses many different semantic styles, suitable for different
purposes.

Specifications in each style are commonly specified and proven correct in relation
to each other using modest means of automation. Giving and relating these is hard
work. Hudak et al. [HHPJW07] cites this as one of the main reasons why Haskell was
never given a formal specification:

Nevertheless, we always found it a little hard to admit that a language as
principled as Haskell aspires to be has no formal definition. But that is the
fact of the matter, and it is not without its advantages. In particular, the
absence of a formal language definition does allow the language to evolve
more easily, because the costs of producing fully formal specifications of
any proposed change are heavy, and by themselves discourage changes.

This thesis studies how to specify, relate, and work with operational semantics that
support language evolution at different levels of abstraction.

1.2 Background: operational semantics

Operational semantics is an approach to formal specification that strikes a balance
between power and simplicity. According to Winskel [Win93, Preface], “operational
semantics describes the meaning of a programming language by specifying how it ex-
ecutes on an abstract machine.” This makes them both accessible, amenable to formal
reasoning, and amenable to deriving interpreters and compilers that faithfully imple-
ment the intended semantics. Operational semantics come in different styles and at
different levels of abstraction. Each style has its merits and drawbacks.
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1.2.1 Traditional styles of operational semantics

Operational semantics come in two styles: small-step and big-step. A small-step re-
lation defines transitions between intermediate configurations in a transition system.
In contrast, big-step relations abstract from intermediate transition steps by relating
configurations directly to final outcomes.

Another important distinction between variants of operational semantics is how
program contexts are represented. Operational semantics dates back to (at least)
Landin’s work on the Mechanical Evaluation of Expressions [Lan64]. Landin’s SECD-
machine consists of a transition function that operates on stacks. Years later, Plotkin in
his famous Aarhus lecture notes remarked [Plo81, p. 18] on abstract machine seman-
tics:

They all have a tendency to pull the syntax to pieces or at any rate to wan-
der around the syntax creating various complex symbolic structures which
do not seem particularly forced by the demands of the language itself. Fi-
nally, they do not in general have any great claim to being syntax-directed
in the sense of defining the semantics of compound phrases in terms of
the semantics of their components, although the definition of the transi-
tion relation does fall into natural cases following the various syntactical
possibilities.

Here, the “complex symbolic structures” that Plotkin refers to are the explicit stacks on
which abstract machine semantics operate. Plotkin proposed Structural Operational
Semantics (SOS) as an alternative. SOS transition relations are defined using condi-
tional rules that rely on the structure of a composite term.

A big-step counterpart to SOS was proposed by Kahn [Kah87], who dubbed this
variant natural semantics, due to its resemblance with natural deduction. Like SOS,
rules in natural semantics are typically defined using conditional rules that rely on the
structure of a composite term, and not on explicit representations of program context.
Thus, big-step SOS is commonly used to denote natural semantics, while small-step SOS
commonly refers to transition relation specifications defined using SOS.

Following Plotkin [Plo81], extending a language with features such as imperative
state or throwing exceptions (abrupt termination) involves modifying and introducing
new SOS rules for existing constructs in a language. This involves tedious and error-
prone modification of rules and proofs. The problem is even more pronounced in
natural semantics: for example, for each construct in The Definition of Standard ML
[MTHM97] with n evaluable sub-phrases, there are n implicit rules for propagating an
exception if it occurs.1 This is known as the duplication problem in big-step semantics
[Cha13].

Felleisen introduced reduction semantics as “a symbolic reasoning system for the
core of expressive languages” [Fel87, p. 3]. Like abstract machines, reduction seman-
tics operate with an explicit representation of program context, and reduces some of

1This is the so-called “exception convention” [MTHM97, p. 47].
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the “wandering around the syntax”, as Plotkin calls it. Using reduction semantics, ex-
pressing features like imperative state, abrupt termination, and control constructs, such
as Landin’s J operator [Lan65] or Scheme’s call/cc [SS75], does not involve changing
or introducing new rules for existing constructs although it may give rise to changing
the notion of substitution or the grammar of contexts [WF94].

Reduction semantics generally has good support for language evolution, in particu-
lar in connection with abrupt termination and control constructs. Recent developments
show that the support for language evolution in SOS and natural semantics can be im-
proved, too.

1.2.2 Recent developments

In order to add imperative stores to the SOS example language considered by Plotkin
[Plo81], all existing rules are reformulated to mention and propagate the store. Sim-
ilarly, when adding the possibility of throwing exceptions to a language, Plotkin in-
troduces new rules for existing constructs. This provides poor support for language
evolution, since such extensions require new rules to be introduced for every existing
construct in the language.

Mosses [Mos04] proposed Modular SOS (MSOS) as a variant of SOS where such
reformulation is not necessary. The central idea is that auxiliary entities are encoded
in labels on transitions, and that propagating effects between consecutive transitions is
handled by composing labels. The semantics of label composition is given by a category
that can be extended with new components in such a way that these are implicitly
propagated without mentioning them explicitly in rules that do not explicitly rely on
them. This permits specifying abrupt termination and even control constructs [STM16]
modularly, without any explicit syntactic representation of control context. In small-
step MSOS, specifying and extending languages with these features does not give rise
to modifying or introducing new rules for any existing constructs.

The technique that is used for propagating abrupt termination and control in a
modular way does not straightforwardly scale to big-step semantics, however. Mosses
remarks [Mos04, p. 218]:

It seems unlikely that an analogous technique could be provided for use in
big-step MSOS. Thus the small-step style has a distinct advantage for the
specification of constructs which might involve abrupt termination.

Recently, Charguéraud [Cha13] proposed the novel pretty-big-step style of opera-
tional semantics. The style is big-step in that it relates configurations directly to final
outcomes, but it uses less abstract rules than big-step semantics. The pretty-big-step
style reduces the duplication problem with semantics involving abrupt termination or
divergence, but still requires the introduction of boilerplate rules in order to propagate
abrupt termination or divergence.

Danvy et al. [DN04, BD09, DJZ11, DM08, Dan08] uses transformations between
functional representations of semantics to give and relate reduction semantics, struc-
tural operational semantics, and denotational (big-step) evaluators. This allows me-

5



1. Introduction

chanical derivation of semantics at different levels of abstraction. Derived artifacts in-
volving abrupt termination [Dan08] typically rely on either explicit program contexts,
or on explicit propagation of exceptions that essentially corresponds to natural seman-
tics suffering from the duplication problem. In functional programming languages,
such duplication is expressible more concisely than in SOS by using pattern matching
to propagate exceptions. However, it is not always obvious how to implement big-step
functional evaluators in proof assistants such as Coq [BC04] or Agda [BDN09], where
functions must satisfy strict syntactic criteria in order to guarantee that they can be
reasoned about without compromising the consistency of the underlying logic.

1.2.3 Proof engineering and type soundness

An important application of operational semantics in programming language engineer-
ing is formal reasoning. A particularly active area of research that uses operational
semantics for formal reasoning is type systems. According to Pierce [Pie02]:

A type system is a tractable method for proving the absence of certain pro-
gram behaviours by classifying phrases according to the kinds of values they
compute.

In practice, operational semantics is commonly used to specify both dynamic seman-
tics and type systems.2 Proving type soundness is a matter of relating the set of pro-
grams that a type system accepts to a set of programs for which evaluation does not go
“wrong”, following Milner’s famous slogan that “well-typed programs do not go wrong”
[Mil78].

Either big-step or small-step operational semantics can be used for proving type
soundness, but the small-step style is often favoured. In their influential paper on the
Syntactic Approach to Type Soundness, Felleisen and Wright [WF94] recall big-step
approaches to type soundness from the literature and remark:

A seemingly minor extension to a language may require a complete re-
structuring of its denotational or structural operational semantics, and may
therefore require a completely new approach to re-establish soundness.

They propose reduction semantics as a means of compartmentalising the type sound-
ness proof into progress and preservation (or subject reduction [CF58]) lemmas. This
compartmentalisation gives type soundness proofs that are more robust under language
extensions. The progress/preservation style of proving type soundness works equally
well for SOS.3

2Type system specifications can be thought of as instances of operational semantics (usually natural
semantics), although operational semantics, in fact, borrows many of its ideas from early pioneering work
in mathematical logic and type theory [Chu40, How80].

3For example, Pierce’s popular text-book on Types and Programming Languages uses SOS for dynamic
semantics [Pie02].
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Felleisen and Wright’s observation that big-step semantics does not scale for type
soundness proofs is echoed by Harper, one of the co-authors of The Definition of Stan-
dard ML [MTHM97] which was originally given in a purely structural big-step style,
where by purely structural, we mean semantics that do not rely on an explicit syntactic
representation of program context. Harper and Stone remark [HS00b, p. 350]:

The [small-step] presentation avoids the need for implicit evaluation rules
for handling exceptions, and supports a natural interpretation of type sound-
ness that does not rely on artificial “wrong” transitions.

Here, the artificial “wrong” transitions that Harper refers to, is the traditional way of
proving big-step type soundness, which involves adding rules for all cases where a
big-step semantics can get stuck.

Another increasingly important aspect of using operational semantics for proof en-
gineering is their amenability to mechanisation in proof assistants. Recent years have
seen a growing interest in using proof assistants, such as Coq [BC04], Agda [BDN09],
or Isabelle [NK14], for reasoning about operational semantics. The attraction of proof
assistants is that they detect and reject proofs with typos, inconsistencies, or errors,
and they provide support for automation. The rigorous nature of proof assistants make
them particularly prone to tedious reformulation of semantics and re-proving propo-
sitions if the semantics of existing constructs is modified when specifications are ex-
tended.

1.2.4 Lack of support for language evolution at different levels of
abstraction

Specifications using small-step and big-step SOS provide valuable tools for giving and
reasoning about programming language semantics. Unfortunately, they suffer from a
number of pragmatic issues:

• SOS rules are reformulated if new auxiliary entities are added to a language,
and new rules for existing constructs are introduced when new sources of abrupt
termination is introduced. This exhibits poor support for language evolution.

• Small-step and big-step semantics for the same language are often specified in-
dependently and proven equivalent by means of ad hoc proofs of correspondence
[Nip06, LG09, NK14, PCG+13, NH09]. Such proofs are routine, yet comprehen-
sive, and are tedious and error-prone to maintain as a language evolves.

• Dealing with abrupt termination in traditional big-step semantics gives rise to
annoying duplication in rules. While such rules can be hidden in specifications
(such as the “exception convention” in Standard ML [MTHM97, p. 47]), such
rules must be taken into account in induction principles, and thus proofs, which
become polluted by annoying duplication.
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• Big-step type soundness is traditionally proven by introducing so-called “wrong”
rules. These are often added manually, which makes such proofs brittle since
failure to add such “wrong” rules may compromise type soundness results.

These pragmatic issues make it expensive to give and maintain specifications of pro-
gramming languages and type systems, and inhibits harnessing the potential of formal
semantics for evolving languages.

Recent developments go some way towards resolving these issues: MSOS [Mos04]
provides good support for language evolution in the small-step but not big-step style;
pretty-big-step [Cha13] minimises the duplication problem but introduces additional
syntax and relies on abort rules for all constructs to propagate abrupt termination
and/or divergence. This clutters induction principles, and requires extra typing rules
for the additional syntax [Cha13, Section 3.3]. Both Charguéraud and Leroy and Grall
have proposals for dealing with type soundness without explicit wrong rules that we
discuss later in Section 2.9.3. Danvy and Nielsen’s refocusing transformation [DN04]
provides a means of transforming small-step evaluation strategies into big-step eval-
uation strategies, for “refocus-ready” functional programs implementing reduction se-
mantics [Dan08, Dan04, DJZ11, Zer13].

In this thesis we propose extensible transition system semantics as a framework that
provides pragmatic support for the pragmatic issues identified in this section, by com-
bining and extending many of the novel ideas from existing lines of research.

1.2.5 Scope: programming languages and their (component-based)
semantics

The PLanCompS4 project provides pragmatic approach to specifying programming lan-
guage semantics. The approach is summarised by Mosses et al. [CMST15, p. 135] as
follows:

Its crucial novel feature is the introduction of an open-ended collection of
so-called fundamental constructs, or funcons. Many of the funcons corre-
spond closely to simplified language constructs. But in contrast to language
constructs, each funcon has a fixed interpretation, which we specify, once
and for all, using [small-step] MSOS.

In this thesis we consider techniques for making the semantics of funcons more widely
and pragmatically applicable. Specifically, we investigate how to automatically derive
modular big-step specifications that soundly abstract their modular small-step coun-
terparts with fixed order of evaluation. Although some funcons are specified to allow
interleaving order of evaluation, we restrict our attention to left-to-right order of eval-
uation, so as to more straightforwardly specify and reason about funcons using big-step
semantics.

The original motivation for deriving big-step rules for funcons was to provide a
basis for deriving more efficient prototype interpreters by a naive translation of MSOS

4http://www.plancomps.org/
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rules into Horn-clauses [BPM14c]. As argued in this introduction, there is also use in
maintaining both small-step and big-step semantics for specification and verification
purposes. The techniques for addressing the pragmatic issues in Section 1.2.4 that we
present in this thesis scale to (M)SOS specifications for funcons as well as traditional
programming language semantics, and gives support for relating small-step and big-
step semantics in a way that enables both deriving more efficient prototype interpreters,
and provides a basis for formal verification.

1.3 Thesis

This thesis studies how to specify, relate, and work with operational semantics that
support language evolution at different levels of abstraction, focusing particularly on
purely structural operational semantics, i.e., semantics without any explicit syntactic
representation of program context. We propose a simple but novel variant of Mosses’
generalised transition systems [Mos04] that we call extensible transition systems. Our
thesis is:

Extensible transition system semantics provides a basis for giving and relating
extensible and purely structural semantics at different levels of abstraction.

The different levels of abstraction that this thesis considers are small-step and big-
step semantics, as well as type systems. The thesis investigates and contributes the
following:

• We present (Chapter 3) Extensible SOS (XSOS) as a simple but novel extension of
Mosses’ Modular SOS. This provides a simple basis for giving concise and exten-
sible specifications of various language features, including abrupt termination, in
a way that scales to both small-step and big-step specifications.

• We provide an internalisation of Danvy and Nielsen’s refocusing technique in
the framework of XSOS, which gives a direct means of relating small-step and
(pretty-)big-step XSOS specifications (Chapter 4) as well as their coinductive
counterparts (Chapter 5);

• A common criticism of big-step SOS is that it is error-prone to work with in con-
nection with type soundness proofs: type soundness typically relies on a manual
instrumentation of the semantics by adding all the cases where the semantics can
get stuck. Failure to add all cases potentially allows us to prove type soundness of
unsound type systems. We recall and investigate a type soundness proof method
based on Cousot’s work on Types as Abstract Interpretations [Cou97]. This avoids
adding artificial “wrong” transitions in order to prove type soundness using big-
step semantics (Chapter 6) and provides a foundation for proving simultaneous
type soundness and strong normalisation;

• We propose that the types as abstract interpretations approach is applicable to ex-
tensible specifications of dynamic semantics and type systems. We investigate the

9



1. Introduction

extent to which this allows us to alleviate the drawback of big-step type sound-
ness proofs that seemingly minor extensions of big-step semantics may require
restructuring both semantics and proof (Chapter 7), and discuss the pros and
cons of the types as abstract interpretations approach.

• To further test the extensibility and pragmatic properties of the type soundness
proof method, we propose a novel type and effect system for Hindley/Milner poly-
morphic type inference in the presence of imperative references (Chapter 8). The
system records a store at the type level to inhibit polymorphic generalisation over
types in the store. We investigate how the types as abstract interpretations proof
method applies to prove the system correct.

These contributions address the pragmatic issues outlined in Section 1.2.4, and im-
prove the state-of-the-art in supporting language evolution in operational semantics
and in harnessing the potential of formal specification.

1.4 Relationship with previous publications

Several of the ideas presented in this thesis have previously appeared in the following
papers, all of which have the author of this thesis as the main author:

1. Casper Bach Poulsen and Peter D. Mosses [BPM14c]. Generating specialized in-
terpreters for Modular Structural Operational Semantics. In LOPSTR’13, volume
8901 of LNCS, pages 220–236. Springer, 2014.

2. Casper Bach Poulsen and Peter D. Mosses [BPM14a]. Deriving pretty-big-step
semantics from small-step semantics. In ESOP’14, volume 8410 of LNCS, pages
270–289. Springer, 2014.

3. Casper Bach Poulsen, Peter D. Mosses, and Paolo Torrini [BPMT15]. Imperative
polymorphism by store-based types as abstract interpretations. In PEPM’15, pages
3–8. ACM, 2015.

4. Casper Bach Poulsen and Peter D. Mosses [BPM16]. Flag-based big-step seman-
tics. To appear in The Journal of Logical and Algebraic Methods in Programming.
http://plancomps.org/flag-based-big-step, 2016.

The first of these publications [BPM14c], co-authored with Mosses, presents the
refocusing transformation for MSOS rules, and a study of comparing the performance
of interpreters based on, respectively, small-step and refocused small-step MSOS rules
implemented in Prolog. The study relies on an internalisation of Danvy and Nielsen’s
refocusing technique in MSOS, which our ESOP’14 paper [BPM14a] follows up on. The
ideas in our LOPSTR’13 paper [BPM14c] are mainly those of the author of this thesis.

In our subsequent ESOP’14 paper [BPM14a], also co-authored with Mosses, we
observe the correspondence between what we call ‘refocused’ rules in LOPSTR, and
the pretty-big-step style introduced by Charguéraud [Cha13] at ESOP’13. We also
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present an idea for representing abrupt termination in big-step semantics using a flag-
based approach; an adaptation of a similar technique attributed to Klin by Mosses
[Mos04]. Chapter 3 of this thesis also describes this idea, and how it is incorporated in
extensible transition systems, which alleviate the need for the somewhat ad hoc syntactic
conventions for writing labels that is used in our ESOP’14 paper [BPM14a, Section 3.2].
The notion of extensible transition system semantics is a novelty of this thesis, and was
not a part of our ESOP paper. The ESOP paper provides proofs of correctness for only
the languages it contains. Chapters 4 and 5 in this thesis generalise the correctness
proofs of the ESOP paper by proving refocusing correct for any rules that satisfy a lax
format of Extensible SOS rules.

Our PEPM’15 paper [BPMT15], co-authored with Mosses and Torrini, presents an
adaptation of types as abstract interpretations to SOS. Mosses and the author wrote
Section 2 together, which describes work that is superseded by [BPM16]. The author
collaborated on adapting the types as abstract interpretations approach to SOS with
Torrini who came up with the idea that lead to the strengthened induction hypothesis
for the type soundness proof technique described in Section 3 of [BPMT15], which he
also co-authored. Chapter 6 of this thesis recalls this technique, and observes some
further implications: the strong normalisation corollary and how to implement it in
the Coq proof assistant. Chapter 7 adapts the technique to XSOS, and applies it to
a language with let-polymorphism and ML-style references. Chapter 8 of this thesis
provides an adapted version of the store-based type system from [BPMT15].

Chapter 5 of this thesis uses ideas from [BPM16], which is an extended version
of an abstract [BPM14b] presented at NWPT’14. The idea in [BPM16, BPM14b] is to
use a flag for distinguishing divergence in the coinductive interpretation of big-step
derivation trees. In contrast to the paper [BPM16], which considers how to apply the
technique to traditional big-step rules, Chapter 5 of this thesis focuses on how to apply
the technique to pretty-big-step rules.
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We give an overview of the state of the art approaches to purely structural operational
semantics, and their (lack of) support for language evolution and reasoning about
programs that diverge. We also recall traditional approaches to proving type soundness
of big-step semantics, and suggest that interpreting types as abstract interpretations
holds potential for simplifying proofs by avoiding what Harper and Stone refer to as
artificial “wrong” transitions [HS00b].

In addition to presenting state of the art approaches, this section also introduces
notation and conventions that will be used throughout the thesis.

2.1 Prerequisites and conventions

The reader is assumed to have some familiarity with set theory, inductive definitions,
and inductive proofs. For a gentle introduction to these concepts see, e.g., textbooks by
Pierce [Pie02, Chapters 1-3], Sangiorgi [San11], or Winskel [Win93]. We also assume
some basic familiarity with coinductive definitions and proofs, where we mainly use
guarded coinduction. For a gentle introduction to the concepts of coinduction see, e.g.,
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Symbol Interpretation

Logical connectives: ∧,∨ conjunction, disjunction
=⇒ , ⇐⇒ logical implication, if-and-only-if
¬,∀,∃ not, for all, there exists

Set-based operations: ∩,∪,\ intersection, union, difference
⊆,⊂,∈ subset, proper subset, membership
×,∗ Cartesian product, Kleene star

Table 2.1: Summary of notation

textbooks by Pierce [Pie02, Chapter 21] or Sangiorgi [San11]. For a gentle introduction
to proofs by guarded coinduction see, e.g., Leroy and Grall’s paper on Coinductive Big-
Step Operational Semantics [LG09, p. 285-287]. Table 2.1 summarises the notation
we will be using.

2.2 Structural operational semantics

In Plotkin’s famous Aarhus lecture notes [Plo81, Plo04] that introduced SOS he writes:

It is the purpose of these notes to develop a simple and direct method for
specifying the semantics of programming languages. Very little is required
in the way of mathematical background; all that will be involved is “symbol-
pushing” of one kind or another of the sort which will already be familiar
to readers with experience of either the non-numerical aspects of program-
ming languages or else formal deductive systems of the kind employed in
mathematical logic.

The means with which Plotkin achieves this end, is by formalising semantics as a tran-
sition system, where the transition relation is specified using structural inference rules,
i.e., rules where the meaning of composite program phrases is given by the meaning of
its structural sub-components.

This section recalls the theory behind SOS, and illustrates its usage on a small
example language that we use throughout this thesis. We specify the language by
gradually adding more features, illustrating some of the strengths (simple rules that
support interleaving) and weaknesses (lack of modularity) of the approach.

To minimise the syntactic clutter in formulas, we rely on the convention that any
variables that occur free in a statement are implicitly quantified at the top-level. For
example, Definition 2.1 uses this convention to define what constitutes a deterministic
transition relation for some set of configurations γ ∈ Γ and labels l ∈ L.1

1In process algebras (e.g., [San11, p. 16]), one often sees deterministic relations defined as relations
which, if they emit the same output have the same resulting configuration; i.e., for any γ,γ ′,γ ′′, l, it holds
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Definition 2.1 (Deterministic relation) A relation  ⊆ Γ×L×Γ is deterministic iff:

γ
l
 γ ′ =⇒

γ
l′
 γ ′′ =⇒

l = l′ ∧ γ ′ = γ ′′

The formula in Definition 2.1 is supposed to read:

for all configurations γ,γ ′,γ ′′ and labels l, l′, if γ
l
 γ ′

and if γ
l′
 γ ′′

then l = l′ and γ ′ = γ ′′

In this formula, we call γ
l−→ γ ′ and γ

l′−→ γ ′′ premises or hypotheses, and say that l =
l′ ∧ γ ′ = γ ′′ is the conclusion or the goal of the formula.

2.2.1 Transition system semantics

Each step in a transition system iterates a program and its state (which we call a config-
uration) towards a final configuration from which no further transitions can be made.
Each intermediate step may emit some observable output, which is recorded in the
label on the transition. Definition 2.2 is due to Plotkin and defines transition systems
formally.

Definition 2.2 (Labelled terminal transition system) A labelled terminal transition sys-
tem (LTTS) is a quadruple 〈Γ,L,→,T 〉 consisting of a set Γ of configurations γ, a set L of

labels l, a ternary relation l−→ ⊆ Γ×L×Γ of labelled transitions (〈γ, l,γ〉 ∈ → is written

γ
l−→ γ), and a set T ⊆ Γ of terminal configurations, such that γ

l−→ γ ′ implies γ 6∈ T .
A computation in an LTTS (from γ0) is a finite or infinite sequence of successive

transitions γi
li−→ γi+1 written γ0

l1−→ γ1
l2−→ . . ., such that if the sequence terminates with γn

we have γn ∈ T .

In SOS, the set of possible transitions are expressed using logical inference rules.
Inference rules have the form:

premises
conclusion

(Rule name)

For a transition γ
l−→ γ ′, we say that the configuration γ is the source of the transition,

and γ ′ is its target. Configurations typically consist of programs and auxiliary entities
that record the state of the program being executed.

that γ
l
 γ ′ =⇒ γ

l′
 γ ′′ =⇒ l = l′ =⇒ γ ′ = γ ′′. We opt for a slightly different definition of determinism

here, since it is a more natural property to consider if labels have more structure (e.g., in MSOS [Mos04]
they may contain auxiliary entities such as stores).
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A transition system makes a transition γ
l−→ γ ′ exactly when we can construct a

proof of the validity of the transition using the inference rules. Proofs consist of finite,
upwardly branching derivation tree whose nodes are inferences where each inference
is justified by an inference rule. The root (conclusion) of a derivation tree is a transition
γ

l−→ γ ′, and the leaves of the derivation tree are simple rules, i.e., rules without premises.
The set of transitions in a transition system is the set of all γ

l−→ γ ′ for which we can
construct such finite derivation trees.

Transition system semantics are widely used for formalising and studying process
algebras and concurrency theory [Mil75, Hoa78], and rules come in different flavours
and variants with different meta-theoretical properties. In their overview of SOS rule
formats and meta-theory, Mousavi et al. [MRG07] recall:

If there are negative premises in the semantical rules it is not self-evident
anymore whether the rules define a transition relation in an unambiguous
way.

The meaning of such rules has been a subject of study in its own right [Gro93, vG04,
CMM13]. We note, however, that Plotkin’s original lecture notes on SOS did not rely on
negative premises, yet showed how to give semantics for a wide range of interesting
constructs, including imperative and applicative constructs. In this thesis we will be
restricting our attention to rules without negative premises, i.e., premises asserting
that some transition is impossible to make.

Another application area for small-step SOS is concurrency [Mil82]. It is challeng-
ing to give denotational semantics for concurrency. Pierce [Pie02, page 33] writes:

The bête noire of denotational semantics turned out to be the treatment of
nondeterminism and concurrency.

It is similarly challenging to give big-step rules for concurrency. We discuss this issue
further in Section 2.4. In this thesis, we restrict our attention to programming lan-
guages with limited non-determinism (the limitation being that non-determinism may
only occur in leaves of derivation trees – in reduction semantics, this is known as unique
decomposition [XSA01, DN04]), interleaving, and concurrency.

We stress that the class of semantics with these restrictions (rules without negative
premises and limited non-determinism) still exhibit poor support for language evolu-
tion at different levels of abstraction. The remainder of this section recalls the basics of
giving small-step SOS specifications, and its (lack of) support for language evolution.

2.2.2 SOS for simple arithmetic expressions

Let us consider a simple arithmetic language.

Abstract syntax. Figure 2.1 defines the abstract syntax of the simple arithmetic ex-
pression language. We say that it is abstract, because it abstracts from the actual
parsed token strings of a language. Abstract syntax introduces symbols for syntactic
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Expr 3 e ::= plus(e,e) | v Expressions

Val 3 v ::= n Values

n ∈ N, {0,1,2, . . .} Natural numbers

Figure 2.1: Abstract syntax for simple arithmetic expressions

e1→ e′1
plus(e1,e2)→ plus(e′1,e2)

(SOS-Plus1)

e2→ e′2
plus(n1,e2)→ plus(n1,e′2)

(SOS-Plus2)

plus(n1,n2)→ n1 +n2
(SOS-Plus)

Figure 2.2: SOS for simple arithmetic expressions

sets and meta-variables ranging over these, where meta-variables are distinguished
using primes and subscripts.

The syntactic sets Expr and Val are defined in Figure 2.1 using a context-free gram-
mar specified in a style reminiscent of BNF. The figure also specifies that we use n as a
meta-variable to range over the set of natural numbers, where the set of natural num-
bers is defined using definitional equality ‘,’. Here, Val is a distinct syntactic sort, even
though it only has a single production. The motivation for this distinction is to allow
extending Val with more values later.

Transition relation. The rules in Figure 2.2 define a transition relation. In the rule
(SOS-Plus), ‘+’ is a primitive operation that adds two natural numbers.

We say that (SOS-Plus) is a simple rule, since it has no premises. Each of the rules
(SOS-Plus1) and (SOS-Plus2) have a single premise that makes a transition in a sub-
expression of plus. The conclusion target plugs the result from doing the transition
into the configuration from the conclusion source, such that the structure of the rest of
that configuration is preserved. Such rules are called congruence rules.

Comparing the rules with the definition of labelled terminal transition systems (Def-
inition 2.2), there is an apparent mismatch between this transition relation and the
definition of LTTS: the transition relation in Figure 2.2 does not make explicit use of
labels, whereas transitions in an LTTS do. This mismatch is, however, superficial: we
can safely assume that each arrow is annotated by an implicit unit label in the singleton
set 1, {unit}. Thus, the set of transitions is→ ⊆ Expr×1×Expr.

17



2. Operational Semantics in Theory and Practice

e1→ e′1
plus(e1,e2)→ plus(e′1,e2)

(SOS-Plus1)

e2→ e′2
plus(e1,e2)→ plus(e1,e′2)

(SOS-Plus2)

plus(n1,n2)→ n1 +n2
(SOS-Plus)

Figure 2.3: SOS for simple arithmetic expressions with interleaving

The transition plus(1,plus(2,plus(3,4)))→ plus(1,plus(2,7)) is in the set of tran-
sitions for→, since we can construct the upwardly branching derivation tree:

(SOS-Plus2)

(SOS-Plus2)

(SOS-Plus)
plus(3,4)→ 7

plus(2,plus(3,4))→ plus(2,7)
plus(1,plus(2,plus(3,4)))→ plus(1,plus(2,7))

Here, inferences are tagged on the left-hand side to indicate which rules they are an
instance of. In the rest of this thesis we omit such tags when obvious.

LTTS. The LTTS 〈Γ,L,→,T 〉 gives a semantics for simple arithmetic expressions, where
Γ , Expr, L , 1, T , Val, and → is the transition relation defined by the rules in Fig-
ure 2.2. Using our transition relation we can compute the result of the expression
plus(1,plus(2,plus(3,4))). The computation is given by the following trace in the
LTTS:

plus(1,plus(2,plus(3,4)))
→ plus(1,plus(2,7))
→ plus(1,9)
→ 10

2.2.3 SOS for simple arithmetic expressions with interleaving

One of the merits of SOS is that it allows straightforward specification of interleaving
order of evaluation. Figure 2.3 specifies a transition relation for simple arithmetic
expressions where the order of evaluation is interleaving. E.g., the following trace is a
computation in the LTTS with→ as defined in Figure 2.3:

plus(plus(1,2),plus(3,5))
→ plus(plus(1,2),8)
→ plus(3,8)
→ 11
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2.2. Structural operational semantics

γ

�

−→∗ γ

(Refl)

γ
l−→ γ ′ γ ′ l′−→∗ γ ′′

γ
l·l′−→∗ γ ′′

(Trans)

Figure 2.4: Reflexive-transitive closure of→ ⊆ Γ×L×Γ

For our simple arithmetic language, the choice of evaluation order is not important:
the same expression always evaluates to the same result regardless of the order of
evaluation. We can prove this by reasoning formally about sequences of transition
steps. To this end, one commonly takes the reflexive-transitive closure of the transition
relation. Figure 2.4 summarises rules that implement the reflexive transitive closure of
a transition relation, where · ∈ L→ L→ L is an associative infix operator that returns
the label resulting from concatenating two labels, and �∈ L is the unit of concatenation;
i.e., it satisfies the following laws:

(l1 · l2) · l3 = l1 · (l2 · l3)

�· l = l

l · �= l

Using the reflexive-transitive closure of the transition relation in Figure 2.3, we can
prove that simple arithmetic expressions with interleaving are confluent.

Informally, a relation is confluent if it, regardless of non-deterministic behaviour,
always yields the same configuration and state. We can prove that this holds for the
transitive closure of the interleaving transition relation in Figure 2.3. The property can
be proven using the Tait-Martin Löf proof method using so-called “strip lemmas”. The
proof method is described in texts such as [Bar84, Pol95].

Confluence gives us that the order of evaluation is not important for simple arith-
metic expressions. However, if we were to have imperative features in our language,
the order of evaluation could affect the results of evaluation. We return to this point in
Section 2.2.6.

2.2.4 SOS for λcbv

Let us now consider an extension of our simple arithmetic language to include more
interesting features. We extend our language with the call-by-value λ -calculus, and
refer to the resulting language as λcbv.

Abstract syntax. Figure 2.5 summarises the abstract syntax for λcbv. Here, we follow
Plotkin [Plo04, p. 91] and use closures to represent statically-scoped λ -abstractions,
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2. Operational Semantics in Theory and Practice

Expr 3 e ::= . . . | λx.e | e e | x Expressions

Val 3 v ::= . . . | 〈x,e,ρ〉 Values

x,y ∈ Var , {x,y, . . .} Variables

ρ ∈ Env, Var fin−→ Val Environments

Figure 2.5: Abstract syntax for λcbv (extends Figure 2.1)

where a closure 〈x,e,ρ〉 records the variable x that the abstraction binds; the body of
the abstraction e; and an environment, ρ, that records a set of bindings for statically
scoped variables. Here, an environment is a finite map from variables to values. For
looking up the value bound to variable x in a map, we write ρ(x). If x is not in the
domain of ρ, the operation is undefined. For environment updates, we write ρ[x 7→ v]
for the update of ρ with v at x.

Transition relation. In order to capture the semantics of substituting variables with
values, we use environments to record substitutions in an auxiliary entity in the config-
uration of the underlying transition system. Thus, as opposed to simple arithmetic ex-
pressions, where configurations consisted only of expressions, configurations are now
pairs of environments and expressions, i.e., Γ, Env×Expr and→⊆ Γ×1×Γ. Environ-
ments record a fixed set of bindings, and for any transition (ρ,e)→ (ρ ′,e′) it holds that
ρ = ρ ′. We follow Plotkin [Plo81] and write such transitions as a judgment ρ ` e→ e′.

Environments must be propagated in all rules, and so we must modify the rules for
simple arithmetic expressions in order to extend the language. Figure 2.6 summarises
the rules that define the transition relation for λcbv. The rule (SOS-λcbv-Var) has a
premise, but we still say that it is a simple rule, since its premise is a side-condition, i.e.,
a constraint that does not involve the transition relation.

The rules for λcbv implement deterministic left-to-right order of evaluation. We
could have chosen to give an interleaving semantics instead. Such a semantics is sum-
marised in Figure 2.7. It is well-known (e.g., [Pol95]) that such a semantics for λ -
calculus is confluent (known as the Church-Rosser theorem [CR36]).

Divergence. The untyped call-by-value λ -calculus has terms whose evaluation di-
verge. We can use coinduction to formalise and reason about these terms. A common
approach to formalising the set of terms that diverge is to give a coinductively defined
rule, like the one in Figure 2.8. Using this rule, we can only construct infinite deriva-
tion trees: there are no simple rules for ∞−→. Thus, we cannot use induction to reason
about the relation. Instead, we use coinduction.

Coinduction allows us to reason about possibly-infinite structures. But how does
one construct and reason about infinite structures? In this thesis we follow the ap-
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2.2. Structural operational semantics

ρ ` e1→ e′1
ρ ` plus(e1,e2)→ plus(e′1,e2)

(SOS-λcbv-Plus1)

ρ ` e2→ e′2
ρ ` plus(n1,e2)→ plus(n1,e′2)

(SOS-λcbv-Plus2)

ρ ` plus(n1,n2)→ n1 +n2
(SOS-λcbv-Plus)

ρ ` λx.e→ 〈x,e,ρ〉 (SOS-λcbv-Lam)

ρ ` e1→ e′1
ρ ` e1 e2→ e′1 e2

(SOS-λcbv-App1)

ρ ` e2→ e′2
ρ ` 〈x,e,ρ ′〉 e2→ 〈x,e,ρ ′〉 e′2

(SOS-λcbv-App2)

ρ ′[x 7→ v2] ` e→ e′

ρ ` 〈x,e,ρ ′〉 v2→ 〈x,e′,ρ ′〉 v2
(SOS-λcbv-AppC)

ρ ` 〈x,v,ρ ′〉 v2→ v
(SOS-λcbv-App)

x ∈ dom(ρ)

ρ ` x→ ρ(x)
(SOS-λcbv-Var)

Figure 2.6: SOS for λcbv

proach implemented in the Coq proof assistant. In Coq, infinite structures can be con-
structed and reasoned about using co-recursive functions that are productive. Productive
co-recursive functions are the dual to structurally decreasing recursive functions. Re-
call that recursive functions consume data of inductive types, and that a function is
structurally decreasing when each recursive call is on something that is (eventually)
structurally smaller than the argument of the current call. For example, the following
boring recursive Coq function iterates through a list of natural numbers and returns
the empty list:

Fixpoint boring (l : list nat) : list nat :=

match l with

| n :: l’ => boring l’

| [] => []

end.

The boring function is structurally decreasing since each recursive call of it is on a list
that is smaller than the one in the previous call. Compare with the following productive
co-recursive function defined over the datatype stream:
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ρ ` e1→ e′1
ρ ` plus(e1,e2)→ plus(e′1,e2)

(SOS-λ ′cbv-Plus1)

ρ ` e2→ e′2
ρ ` plus(e1,e2)→ plus(e1,e′2)

(SOS-λ ′cbv-Plus2)

ρ ` plus(n1,n2)→ n1 +n2
(SOS-λ ′cbv-Plus)

ρ ` λx.e→ 〈x,e,ρ〉 (SOS-λ ′cbv-Lam)

ρ ` e1→ e′1
ρ ` e1 e2→ e′1 e2

(SOS-λ ′cbv-App1)

ρ ` e2→ e′2
ρ ` e1 e2→ e1 e′2

(SOS-λ ′cbv-App2)

ρ ′[x 7→ v2] ` e→ e′

ρ ` 〈x,e,ρ ′〉 v2→ 〈x,e′,ρ ′〉 v2
(SOS-λ ′cbv-AppC)

ρ ` 〈x,v,ρ ′〉 v2→ v
(SOS-λ ′cbv-App)

x ∈ dom(ρ)

ρ ` x→ ρ(x)
(SOS-λ ′cbv-Var)

Figure 2.7: Interleaving SOS for λcbv

γ
l−→ γ ′ γ ′ ∞−→

γ
∞−→

(TransInf)

Figure 2.8: Coinductive infinite closure of→

CoInductive stream (A : Type) := Cons (a:A) (s:stream A).

CoFixpoint add_one (s : stream nat) : stream nat :=

match s with

| Cons n s’ => Cons (n+1) (add_one s’)

end.

In this example, the function add one takes an infinite stream of natural numbers and
adds one to each natural number of the stream, such that each co-recursive call pro-
duces an element of the result stream before making the recursive call. Co-recursive
functions can be called lazily to give finite approximations of (possibly-)infinite struc-
tures.
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2.2. Structural operational semantics

Coq automatically checks that a function is productive by a so-called guardedness
check (see, e.g., [BC04, LG09, Chl11] for more details). In this thesis, by coinductive
proofs we understand guarded coinductive proofs that can be implemented in and
accepted by Coq. For more details on coinduction, we refer the reader to introductory
textbooks, such as Pierce’s [Pie02, Chapter 21] or Sangiorgi’s [San11].

We can use guarded coinduction to prove that self-applicative expressions, like
ω , (λx.x x) (λx.x x), diverge.

Proposition 2.3 (ω diverges) The expression ω diverges, i.e.:

ρ ` ω
∞−→

Proof. The proof is surprisingly tricky when reasoning by guarded coinduction on the
structure of rules. E.g., applying (TransInf) twice, and each of (SOS-λcbv-App1) and
(SOS-λcbv-App2) once, we get the goal:

ρ ` 〈x,x x,ρ〉 〈x,x x,ρ〉 ∞−→ (Goal)

It seems sensible to use this goal as our coinduction hypothesis, i.e.:

ρ ` 〈x,x x,ρ〉 〈x,x x,ρ〉 ∞−→ (CIH)

By applying (TransInf) twice, and (SOS-λcbv-App) and (SOS-λcbv-Var) twice, the goal
becomes:

ρ ` 〈x,〈x,x x,ρ〉 〈x,x x,ρ〉,ρ〉 〈x,x x,ρ〉 ∞−→ (Goal)

Although the term in this goal is equivalent (as we shortly argue) to the coinduction
hypothesis, (CIH) does trivially match the goal. The problem is only aggravated if
we continue to apply (TransInf) and the matching small-step rules to continue the
derivation: the catch is that the expression grows in each step, so the coinduction
hypothesis cannot be trivially applied.

The issue arises due to the way closures are formalised, and does not apply to
substitution-based approaches [LG09]. The issue is resolvable without substitution
by: introducing a rewriting relation that allows us to simplify a term to prevent its
growth after each step; using the rewriting relation to define a relaxed infinite clo-
sure; proving that the relaxed closure is sound; and using it to show that ω diverges.
The proof is given in the Coq formalisation accompanying this thesis (see omg div in
sos/lamcbvlet/small lamcbvlet.v).2

In Proposition 2.8 we prove that ω diverges using natural semantics with closures,
where the property follows by guarded coinduction alone, without any rewriting.

We have recalled how to extend an SOS for a simple arithmetic language with the
call-by-value λ -calculus. The extension required us to modify all rules in our language.

2Available on: http://cs.swansea.ac.uk/~cscbp/xtss.zip
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2. Operational Semantics in Theory and Practice

Expr 3 e ::= . . . | throw(e) | catch(e,e) | EXC(v)

Figure 2.9: Abstract syntax for λ •cbv (extends Figure 2.5)

ρ ` e→ e′

ρ ` throw(e)→ throw(e′)
(SOS-Throw1)

ρ ` throw(v)→ EXC(v)
(SOS-Throw)

ρ ` e1→ e′1
ρ ` catch(e1,e2)→ catch(e′1,e2)

(SOS-Catch1)

ρ ` catch(v1,e2)→ v1
(SOS-CatchV)

ρ ` catch(EXC(v),e2)→ e2 v
(SOS-CatchE)

Figure 2.10: SOS for exception handling (extends Figure 2.6)

2.2.5 SOS for λ •cbv

Now, suppose we want to extend λcbv with abrupt termination, namely throwing and
handling exceptions.

Abstract syntax. The abstract syntax for our language is modified as specified in Fig-
ure 2.9. The new constructs introduced are a throw construct for throwing exceptions,
a catch construct for catching and handling them, and an EXC(v) expression that rep-
resents a thrown exception.

Transition relation. The rules for the newly introduced constructs are summarised
in Figure 2.10. In addition to those rules, we need rules for propagating exceptions.
The traditional approach to propagating exceptions is to add explicit propagation rules.
Figure 2.11 gives such rules. The approach inherent to these rules differs slightly from
Plotkin’s exposition [Plo81], but achieve the same effect of propagating abrupt ter-
mination using slightly more concise rules. Plotkin’s approach to propagating abrupt
termination is recalled in Appendix C.2.

As we extend our language with new constructs, rules for propagating exceptions
must be added for those constructs too. Such rules are tedious and error-prone to write
and read.
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2.2. Structural operational semantics

ρ ` plus(EXC(v),e)→ EXC(v)
(SOS-λ •cbv-Plus1-Exc)

ρ ` plus(e,EXC(v))→ EXC(v)
(SOS-λ •cbv-Plus2-Exc)

ρ ` EXC(v) e→ EXC(v)
(SOS-λ •cbv-App1-Exc)

ρ ` e EXC(v)→ EXC(v)
(SOS-λ •cbv-App2-Exc)

ρ ` throw(EXC(v))→ EXC(v)
(SOS-λ •cbv-Throw-Exc)

Figure 2.11: SOS rules for propagating exceptions in λ •cbv

Expr 3 e ::= . . . | ref(e) | deref(e) | assign(e,e) Expressions

Val 3 v ::= . . . | r Values

r ∈ Ref , {r1, r2, . . .} References

σ ∈ Store, Ref fin−→ Val Stores

Figure 2.12: Abstract syntax for λ •cbv+ref (extends Figure 2.9)

LTTS. The LTTS is given by the tuple 〈Γ,L,→,T 〉 where Γ , Env×Expr; L , 1; → ⊆
Γ×1×Γ is as defined in Figures 2.6, 2.10, and 2.11; and T , Val∪{EXC(v)}.

2.2.6 SOS for λ •cbv+ref

The final extension of our example SOS semantics that we consider is the extension
with ML-style references [MTHM97].

Abstract syntax. The extended abstract syntax is summarised in Figure 2.12. Stores
are given by finite maps from references to values. Here, the ref construct allocates a
reference; deref deallocates a reference in the current store; and assign is used for
updating the value that a given reference refers to in the store.

Transition relation. In order to track the state of stores, our transition relation must
propagate stores between transitions. Thus, the notion of configuration becomes Γ ⊆
Env×Expr× Store. Extending a language with stores in SOS gives rise to modifying
all rules in a language. Since our language has abrupt termination, we also need to
carefully give rules propagating exceptions for new constructs. Figure 2.13 summarises
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ρ ` (e1,σ)→ (e′1,σ
′)

ρ ` (plus(e1,e2),σ)→ (plus(e′1,e2),σ
′)

(SOS-λ •cbv+ref-Plus1)

ρ ` (e2,σ)→ (e′2,σ
′)

ρ ` (plus(n1,e2),σ)→ (plus(n1,e′2),σ
′)

(SOS-λ •cbv+ref-Plus2)

ρ ` (plus(n1,n2),σ)→ (n1 +n2,σ)
(SOS-λ •cbv+ref-Plus)

ρ ` (λx.e,σ)→ (〈x,e,ρ〉,σ)
(SOS-λ •cbv+ref-Lam)

ρ ` (e1,σ)→ (e′1,σ
′)

ρ ` (e1 e2,σ)→ (e′1 e2,σ
′)

(SOS-λ •cbv+ref-App1)

ρ ` (e2,σ)→ (e′2,σ
′)

ρ ` (v1 e2,σ
′)→ (v1 e′2,σ

′)
(SOS-λ •cbv+ref-App2)

ρ ′[x 7→ v2] ` (e,σ)→ (e′,σ ′)
ρ ` (〈x,e,ρ ′〉 v2,σ)→ (〈x,e′,ρ ′〉 v2,σ

′)
(SOS-λ •cbv+ref-AppC)

ρ ` (〈x,v,ρ ′〉 v2,σ)→ (v,σ)
(SOS-λ •cbv+ref-App)

x ∈ dom(ρ)

ρ ` (x,σ)→ (ρ(x),σ)
(SOS-λ •cbv+ref-Var)

ρ ` (throw(v),σ)→ (EXC(v),σ)
(SOS-λ •cbv+ref-Throw)

ρ ` (e1,σ)→ (e′1,σ
′)

ρ ` (catch(e1,e2),σ)→ (catch(e′1,e2),σ
′)

(SOS-λ •cbv+ref-Catch1)

ρ ` (catch(v1,e2),σ)→ (v1,σ)
(SOS-λ •cbv+ref-CatchV)

ρ ` (catch(EXC(v),e2),σ)→ (e2 v,σ)
(SOS-λ •cbv+ref-CatchE)

Figure 2.13: Updated SOS for λ •cbv fragment of λ •cbv+ref

how the rules for the λ •cbv-fragment of our language are updated to propagate stores;
Figure 2.14 summarises the rules for the fragment of our language with references;
and Figure 2.15 gives rules for propagating exceptions.

If we were to consider an interleaving semantics for λ •cbv+ref, the semantics is no
longer confluent: consider, for example, the expression:

seq(plus(seq(assign(r,1),1),seq(assign(r,2),2)),deref(r))

Here, seq(e1,e2), (λ .e2) e1. Evaluating this term in a store σ where r ∈ dom(σ) gives
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ρ ` (e,σ)→ (e′,σ ′)
ρ ` (ref(e),σ)→ (ref(e′),σ ′)

(SOS-λ •cbv+ref-Ref1)

r 6∈ dom(σ)

ρ ` (ref(v),σ)→ (r,σ [r 7→ v])
(SOS-λ •cbv+ref-Ref)

ρ ` (e,σ)→ (e′,σ ′)
ρ ` (deref(e),σ)→ (deref(e′),σ ′)

(SOS-λ •cbv+ref-Deref1)

r ∈ dom(σ)

ρ ` (deref(r),σ)→ (σ(r),σ)
(SOS-λ •cbv+ref-Deref)

ρ ` (e1,σ)→ (e′1,σ
′)

ρ ` (assign(e1,e2),σ)→ (assign(e′1,e2),σ
′)

(SOS-λ •cbv+ref-Assign1)

ρ ` (e2,σ)→ (e′2,σ
′)

ρ ` (assign(r,e2),σ)→ (assign(r,e′2),σ
′)

(SOS-λ •cbv+ref-Assign2)

r ∈ dom(σ)

ρ ` (assign(r,v),σ)→ (unit,σ [r 7→ v])
(SOS-λ •cbv+ref-Assign)

Figure 2.14: SOS rules for ref fragment of λ •cbv+ref

ρ ` (plus(EXC(v),e),σ)→ (EXC(v),σ)
(SOS-λ •cbv+ref-Plus1-Exc)

ρ ` (plus(e,EXC(v)),σ)→ (EXC(v),σ)
(SOS-λ •cbv+ref-Plus2-Exc)

ρ ` (EXC(v) e,σ)→ (EXC(v),σ)
(SOS-λ •cbv+ref-App1-Exc)

ρ ` (e EXC(v),σ)→ (EXC(v),σ)
(SOS-λ •cbv+ref-App2-Exc)

ρ ` (throw(EXC(v)),σ)→ (EXC(v),σ)
(SOS-λ •cbv+ref-Throw-Exc)

ρ ` (ref(EXC(v)),σ)→ (EXC(v),σ)
(SOS-λ •cbv+ref-Ref-Exc)

ρ ` (deref(EXC(v)),σ)→ (EXC(v),σ)
(SOS-λ •cbv+ref-Deref-Exc)

ρ ` (assign(EXC(v),e),σ)→ (EXC(v),σ)
(SOS-λ •cbv+ref-Assn1-Exc)

ρ ` (assign(e,EXC(v)),σ)→ (EXC(v),σ)
(SOS-λ •cbv+ref-Assn2-Exc)

Figure 2.15: SOS rules for propagating exceptions in λ •cbv+ref
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either 1 or 2, depending on the evaluation order.
We have recalled traditional approaches to giving semantics and proving proper-

ties about it using SOS. The resulting rules are simple and purely structural: they do
not have any explicit representation of program context, but gives meaning to terms
by means of a transition relation that is defined over the structure of program terms.
Although rules are simple, each extension required us to either modify rules for exist-
ing constructs, or introduce new rules for existing constructs. We also witnessed an
explosion in the number of rules required to propagate exceptions.

2.3 Modular SOS

Modular SOS [Mos04] (MSOS) was introduced in order to address the problems with
poor modularity in SOS. Mosses achieves this by extending the notion of transition
system we saw in Definition 2.2 to generalised transition systems, and by using MSOS
rules for transition relations.

2.3.1 Generalised transition system semantics

Definition 2.4 recalls generalised terminal transition systems, due to Mosses [Mos04]
(who calls them just “generalised transition systems” – here we include the ‘terminal’
modifier, in order to avoid confusion later in Chapter 3 where we consider more lax
transition system variants).

Definition 2.4 (Generalised terminal transition systems) A generalised terminal tran-
sition system (GTTS) is a quadruple 〈Γ,C,→,T 〉 where C is a category with morphisms
L, such that 〈Γ,L,→,T 〉 is an LTTS.

A computation in a GTTS is a computation in the underlying LTTS such that its trace
is a path in the category C: whenever a transition labelled ` is followed immediately
by a transition labelled `′, the labels `,`′ are required to be composable in C.

Definition 2.5 recalls what we understand by a category (where the definition here
is borrowed from Pierce [Pie91], but see [ML71] or [Awo06] for more classical and
detailed introductions to category theory).

Definition 2.5 A category comprises:

1. a collection of objects;

2. a collection of morphisms;

3. operations assigning to each morphism f an object dom( f ), its domain, and an
object cod( f ), its codomain;

4. a composition operator assigning to each pair of morphisms f and g, where
cod( f ) = dom(g), a composite morphism f # g : dom( f )→ cod(g), satisfying the
following associative law:
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2.3. Modular SOS

for any morphisms f : A→ B,g : B→C, and h : C→D (with A,B,C, and
D not necessarily distinct),

f # (g # h) = ( f # g) # h;

5. for each object A, an identity morphism idA : A→ A satisfying the following iden-
tity law:

for any morphism f : A→ B

f # idB = f and idA # f = f .

Labels and configurations. Definition 2.4 states that labels in Modular SOS are
morphisms in a category C. Modular SOS enforces that configurations in GTTSs are
restricted to abstract syntax and computed values, and encode auxiliary entities as
objects and morphisms in the category C.

The original foundations of Modular SOS [Mos99] used a specialised notion of la-
bel categories, and provided so-called label transformers for extending label categories,
analogous to monad transformers in denotational semantics [Mog91, LHJ95]. Subse-
quently, Mosses [Mos04] adopted indexed product categories for labels without any loss
of generality.

An indexed product category is given by some C , ∏i∈J Ci, where J is a set of
indices. In order to extend the product one simply adds a new index j to the index
set, and a new category C j to the product category C. Modular SOS does not constrain
which types of categories this product may contain, but does provide three basic label
categories:

• Discrete category: there is a single (identity) morphism for each object. Such
morphisms represent information that can be inspected but not changed by a
transition, i.e., they describe the behaviour of auxiliary entities such as the envi-
ronments we saw in Section 2.2.4.

• Preorder category: the set of objects are preordered by their morphisms. Such
morphisms represent information that can be inspected and changed by a tran-
sition. If it is unchanged, the morphism is the identity morphism on an object.
Morphisms describe the behaviour of auxiliary entities such as the stores we saw
in Section 2.2.6.

• Free monoid: there is a single object whose morphisms represent finite sequences.
Composition corresponds to sequence concatenation. Such morphisms corre-
spond to the concatenable labels in LTTSs that we recalled in Section 2.2.3.

Definition 2.6, due to Mosses [Mos04, Definition 5], defines the indexed product cate-
gory used in Modular SOS labels.
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Definition 2.6 (Component category) Let RO, RW , and WO be disjoint sets of indices,
and I , RO∪RW ∪WO. For each i ∈ I let a set Oi be given, such that whenever i ∈WO,
Oi is a monoid. Each Oi determines a component category Ci, as follows:

• if i ∈ RO, then Ci is the discrete category with Oi as its set of objects and also as
its set of (identity) morphisms;

• if i ∈ RW , then Ci is the preorder category with Oi as its set of objects, and Oi×Oi

as its set of morphisms;

• if i ∈WO, then Ci is the category with a single object, and with the monoid Oi as
its set of morphisms.

MSOS adopts record-like notation, as known from, e.g., Standard ML [MTHM97],
to refer to auxiliary entities by pattern-matching against morphisms. For example:

• {env=ρ, . . .} specifies morphisms, such that projecting index env∈ I gives an iden-
tity morphism on ρ;

• {sto=σ ,sto′=σ ′, . . .} specifies labels, such that projecting index sto ∈ I gives a
morphism between σ and σ ′; and

• {out′=v, . . .} specifies labels, such that projecting index out′ ∈ I gives an identity
morphism on v.

Here, we use ‘. . .’ as a formal meta-variable ranging over the remaining morphisms in
the product. MSOS also uses a distinguished meta-variable ‘—’ to refer to products of
identity morphisms.

2.3.2 MSOS for simple arithmetic expressions

Having recalled the foundations of Modular SOS, we illustrate how it solves the prob-
lems with SOS that we saw in the previous section. We consider how to give a GTTS
semantics for the simple arithmetic expressions language from Section 2.2.2.

Abstract syntax. The abstract syntax is unchanged from Figure 2.1.

Transition relation. Figure 2.16 specifies a transition relation for simple arithmetic
expressions using MSOS rules. The {. . .} label in rules (MSOS-Plus1) and (MSOS-
Plus2) is an arbitrary morphism, and the use of the meta-variable ‘. . .’ in both the
premise and conclusion ensures that all auxiliary entities are propagated unchanged
between the premise and conclusion. The {—} label in rule (MSOS-Plus) ensures that
no side-effects occur between the source and the target of the transition, and corre-
sponds to an identity morphism in the underlying product category of the generalised
transition system.
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e1
{...}−−→ e′1

plus(e1,e2)
{...}−−→ plus(e′1,e2)

(MSOS-Plus1)

e2
{...}−−→ e′2

plus(n1,e2)
{...}−−→ plus(n1,e′2)

(MSOS-Plus2)

plus(n1,n2)
{—}−−→ n1 +n2

(MSOS-Plus)

Figure 2.16: MSOS for simple arithmetic expressions

GTTS. The tuple 〈Γ,C,→,T 〉 is a generalised transition system for simple arithmetic
expressions, where Γ , Expr; C is a default category with a single object with a single
identity arrow;→ is as defined by the rules in Figure 2.16; and T , Val.

2.3.3 MSOS for λcbv

We extend the generalised transition system for simple arithmetic expressions with the
call-by-value λ -calculus.

Abstract syntax. The abstract syntax is the same as in Figure 2.5.

Transition relation. Figure 2.17 summarises the MSOS rules for λcbv. Unlike the ex-
tension we saw with SOS, the MSOS rules for simple arithmetic expressions remain
unchanged. Rules that access the environment do so via labels with the structure
{env=ρ,X} where X is a variable ranging over all unmentioned label components.

GTTS. The tuple 〈Γ,C,→,T 〉 is a generalised transition system for λcbv. Configura-
tions Γ and terminal configurations T are the updated notions of expressions and val-
ues, respectively. Now, the indexed product category C comprises a single category,
namely a discrete category whose objects are environments ρ, such that each object
has a single identity morphism. Although the product category comprises a single ob-
ject, rules still parameterise over arbitrary labels, to permit future extensions.

Closures of transition relation. It is a straightforward matter to adapt to MSOS the
reflexive-transitive closure and infinite closure that we used to reason about sequences
of transitions for SOS. Figure 2.18 summarises the MSOS counterparts to these re-
lations. Here, the ‘ # ’ operator is the composition operation for morphisms in the
underlying product category of the generalised transition system.
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λx.e
{env=ρ,—}−−−−−−−→ 〈x,e,ρ〉

(MSOS-Lam)

e1
{...}−−→ e′1

e1 e2
{...}−−→ e′1 e2

(MSOS-App1)

e2
{...}−−→ e′2

v1 e2
{...}−−→ v1 e′2

(MSOS-App2)

e
{env=ρ ′[x 7→v2],...}−−−−−−−−−−→ e′

〈x,e,ρ ′〉 v2
{env=ρ,...}−−−−−−→ 〈x,e′,ρ ′〉 v2

(MSOS-AppC)

〈x,v,ρ ′〉 v2
{—}−−→ v

(MSOS-App)

x ∈ dom(ρ)

x
{env=ρ,—}−−−−−−−→ ρ(x)

(MSOS-Var)

Figure 2.17: MSOS for λcbv (extends Figure 2.16)

γ
{—}−−→∗ γ

(MSOS-Refl)

γ
`−→ γ ′ γ ′ `′−→∗ γ ′′

γ
` # `′−−→∗ γ ′′

(MSOS-Trans)

γ
`−→ γ ′ γ ′ −→∞ γ ′′

γ −→∞ (MSOS-TransInf)

Figure 2.18: Reflexive-transitive and infinite closure of an MSOS transition relation
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Expr 3 e ::= ... | throw(e) | catch(e,e) | stuck
Exc 3 ε ::= OK | EXC(v)

Figure 2.19: Abstract syntax for λ •cbv (extends Figure 2.5)

2.3.4 MSOS for λ •cbv

MSOS also supports modular abrupt termination. The idea (attributed to Klin by
Mosses [Mos04, p. 216]) is to model exceptions as signals: when abrupt termina-
tion occurs, an observable signal is emitted. Constructs may listen for the signal and
intercept it to handle the exception. All programs are wrapped in a top-level program
construct that listens for signals, such that, if a signal makes its way to the top-level
of the program, the program construct contracts the current program to a terminal
configuration, thereby abruptly terminating the program.

Abstract syntax. There is no longer any need for exceptions to be in the syntactic set
Expr. Instead, exceptions are encoded by adding a label component ranged over by a
syntactic set Exc. We also add a new expression form stuck which represents a stuck
computation. Figure 2.19 gives the abstract syntax for the MSOS specification of λ •cbv.
Here, OK is the unobservable signal, indicating that no exception is occurring.

Transition relation. The transition relation in Figure 2.20 specifies the semantics of
abrupt termination. Once the sub-expression of throw has been evaluated to a value v,
it makes a transition to a stuck expression, which has no further transitions, and emits
v has an exception signal.

GTTS. Configurations and terminal configurations are the extended sets of expres-
sions and values summarised in Figure 2.19. The indexed product category C is aug-
mented with a new category that implements a free monoid: a single object with
multiple identity arrows, one for each possible exception that can be thrown, and a
distinguished unobservable arrow for OK.

2.3.5 MSOS for λ •cbv+ref

The extension of λ •cbv+ref with references is also straightforward to specify in MSOS
without modifying existing rules.

Abstract syntax. The abstract syntax for the new constructs is identical to that given
in Figure 2.12.
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e
{...}−−→ e′

throw(e)
{...}−−→ throw(e′)

(MSOS-Throw1)

throw(v)
{exc′=EXC(v),—}−−−−−−−−−−→ stuck

(MSOS-Throw)

e1
{exc′=OK,...}−−−−−−−→ e′1

catch(e1,e2)
{exc′=OK,...}−−−−−−−→ catch(e′1,e2)

(MSOS-Catch1)

catch(v,e2)
{—}−−→ v

(MSOS-CatchV)

e1
{exc′=EXC(v),...}−−−−−−−−−→ e′1

catch(e1,e2)
{exc′=OK,...}−−−−−−−→ e2 v

(MSOS-CatchE)

e
{exc′=OK,...}−−−−−−−→ e′

program(e)
{exc′=OK,...}−−−−−−−→ program(e′)

(MSOS-Program1)

program(v)
{—}−−→ v

(MSOS-ProgramV)

e
{exc′=EXC(v),...}−−−−−−−−−→ e′

program(e)
{exc′=OK,...}−−−−−−−→ v

(MSOS-ProgramE)

Figure 2.20: MSOS for λ •cbv (extends Figure 2.17)

Transition relation. Figure 2.21 specifies the transition relation for the introduced
constructs. Constructs that access the store do so via labels whose structure are given by
{sto=σ ,sto′=σ ′,X} where X is a variable ranging over unmentioned label components,
such that σ is the store before making the transition, and σ ′ is the store after making
the transition.

GTTS. Configurations and terminal configurations are the extended sets of expres-
sions and values summarised in Figure 2.19. The indexed product category C is aug-
mented with a new preorder category where the objects of the category is the set of
stores, and with morphisms between all objects.

2.3.6 MSOS for printing

The semantics of a simple print construct is also straightforward to specify in MSOS
without modifying or introducing new rules for existing constructs.
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e
{...}−−→ e′

ref(e)
{...}−−→ ref(e′)

(MSOS-Ref1)

r 6∈ dom(σ)

ref(v)
{sto=σ ,sto′=σ [r 7→v],—}−−−−−−−−−−−−−−→ r

(MSOS-Ref)

e
{...}−−→ e′

deref(e)
{...}−−→ deref(e′)

(MSOS-Deref1)

r ∈ dom(σ)

deref(r)
{sto=σ ,sto′=σ ,—}−−−−−−−−−−−→ σ(r)

(MSOS-Deref)

e1
{...}−−→ e′1

assign(e1,e2)
{...}−−→ assign(e′1,e2)

(MSOS-Assign1)

e2
{...}−−→ e′2

assign(r,e2)
{...}−−→ assign(r,e′2)

(MSOS-Assign2)

r ∈ dom(σ)

assign(r,v)
{sto=σ ,sto′=σ [r 7→v],—}−−−−−−−−−−−−−−→ unit

(MSOS-Assign)

Figure 2.21: MSOS for λ •cbv+ref (extends Figure 2.20)

Expr 3 e ::= ... | print(e)

Figure 2.22: Abstract syntax for printing (extends Figure 2.12)

Abstract syntax. The abstract syntax of the extension is summarised in Figure 2.22.

Transition relation. The rules in Figure 2.23 specify the semantics of printing. These
rules make use of a label component out′, a “write-only” label component ranged over
by lists of values, corresponding to the free monoid with list concetenation as its oper-
ator, and the empty list as its unit.

We have recalled how to use MSOS for specifying and reasoning about program-
ming language semantics. MSOS supports adding new constructs and features without
modifying existing rules.
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e
{...}−−→ e′

print(e)
{...}−−→ print(e′)

print(v)
{out′=[v],—}−−−−−−−→ unit

Figure 2.23: MSOS for printing (extends Figure 2.21)

2.4 Natural semantics

A virtue of small-step semantics is that it is flexible and permits specifying semantics
with interleaving. For languages with a fixed and deterministic left-to-right order of
evaluation, such as the λ •cbv+ref language, the big-step style of semantics known as
natural semantics, due to Kahn [Kah87], is also well-suited.

2.4.1 Natural semantics vs. SOS

Natural semantics is often described as a variant of SOS. One talks about transition
system semantics as being small-step, since the transitions represent a computation as
a sequence of steps between intermediate states. In contrast, natural semantics is said
to be big-step, since rules define a relation which relates program expressions directly
to their final results in what we regard as one ‘big step’.

Plotkin’s original SOS exposition uses a related notion of big steps, although his
notion is defined in a slightly different way: Plotkin [Plo04, page 33] uses the reflexive-
transitive closure in premises of transition rules to get a big-step effect. For example,
the following rule specifies a Plotkin-style big-step semantics of plus via the reflexive-
transitive closure:

e1→∗ n1 e2→∗ n2

plus(e1,e2)→ n1 +n2
(SOS-Plotkin-Big-Plus)

In contrast, natural semantics typically abstract from intermediate steps and from the
underlying notion of transition system. Rules and proof derivations in natural seman-
tics closely resemble proofs in natural deduction (the well-known logic framework –
for an introduction see, e.g., [Man74]), which is where natural semantics derives its
name from.

When natural semantics is often described as a variant of SOS, it is due to the close
relationship between natural semantics and SOS: a natural semantics can be thought of
as a transition system specification that abstracts from intermediate steps, and relates
a set of initial configurations (the domain of a big-step relation) to a set of final con-
figurations (the codomain of a big-step relation). We recall how to specify the example
languages from Section 2.2 using natural semantics, and compare and contrast with
SOS.
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ExprNS 3 e ::= plus(e,e) | num(n) Expressions

ValNS 3 v ::= n Values

n ∈ N, {0,1,2, . . .} Natural numbers

Figure 2.24: Abstract syntax and semantic values for simple arithmetic expressions

e1⇒ n1 e2⇒ n2

plus(e1,e2)⇒ n1 +n2
(NS-Plus)

num(n)⇒ n
(NS-Num)

Figure 2.25: Natural semantics for simple arithmetic expressions

2.4.2 Natural semantics for simple arithmetic expressions

We consider how to specify syntax and natural semantics of our simple arithmetic lan-
guage.

Abstract syntax. Natural semantics assigns meaning to program phrases expressed
using abstract syntax. Natural semantics has a notion of semantic values that is typi-
cally distinct from the syntactic values in abstract syntax trees. Figure 2.24 defines the
syntactic sets we will use to define a natural semantics for simple arithmetic expres-
sions.

Semantics. The rules in Figure 2.25 specifies a relation⇒⊆ ExprNS×ValNS. We say a
term e∈ ExprNS evaluates to a value v∈ ValNS when we can use the rules to construct an
upwardly branching derivation tree whose root (conclusion) is e⇒ v, and whose leaves
are simple rules with satisfied side-conditions. For example, the following derivation
tree is a proof that adding 1,2,3, and 4 gives 10:

num(1)⇒ 1 num(2)⇒ 2
plus(num(1),num(2))⇒ 3

num(3)⇒ 3 num(4)⇒ 4
plus(num(3),num(4))⇒ 7

plus(plus(num(1),num(2)),plus(num(3),num(4)))⇒ 10

Natural semantics typically leave open the order of evaluation for premises. Thus,
the rule (NS-Plus) evaluates e1 and e2 in either left-to-right or right-to-left order. Thus,
natural semantics is more well-suited for languages without interleaving.

Unlike SOS, it is less straightforward to express interleaving using natural seman-
tics. For some natural semantics, interleaving can also be modelled by “shuffling” the
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effects generated by interleaving evaluations after the fact [Mit94, Mos04]. In denota-
tional semantics, power-domains [Plo76] and so-called resumptions [Mil75] are used to
this avail. Nakata and Uustalu [NU10, Uus13] show how these techniques are adapt-
able to coinductive natural semantics. This thesis focuses on languages with limited
non-determinism.

2.4.3 Comparison of small-step and big-step semantics

In spite of interleaving being more straightforwardly expressed in terms of small-step
semantics, big-step semantics has other advantages:

• Conciseness: natural semantics without abrupt termination or divergence are typ-
ically more concise than their small-step counterparts. For example, Table 2.2
compares the small-step semantics in Figures 2.2 and 2.16 to the big-step seman-
tics in Figure 2.25. In the table, the ‘+2’ for small-step is counting the rules for
the transitive closure.

Big-step semantics is more concise for specifying simple arithmetic expressions,
but the picture changes dramatically in the presence of divergence and abrupt
termination, as we shall see later in Sections 2.4.4 and 2.4.5.

• Interpretive overhead: naive small-step interpreters that implement semantics like
our SOS semantics for simple arithmetic expressions (Figure 2.2) have a con-
siderable interpretive overhead compared to big-step interpreters implementing
semantics like the one in Figure 2.25. Danvy and Nielsen’s work on refocusing
[DN04] addresses exactly this shortcoming of small-step semantics, and shows
how to deforest small-step interpreters for reduction semantics into correspond-
ing big-step evaluators. They also quantify the speed-up resulting from refocus-
ing, and conclude that refocused evaluation is always at least as efficient as naive
small-step evaluation strategies, and often much more efficient. Bach Poulsen and
Mosses [BPM14c] illustrates the similar observation that evaluating Horn-clauses
in Prolog (the well-known logic programming language – for an introduction see,
e.g., [BBS06]) corresponding to big-step MSOS rules have a similarly low inter-
pretive overhead, compared to evaluating Horn-clauses in Prolog that correspond
to small-step MSOS rules.

• Pragmatic use in proofs: being more abstract than small-step rules, certain kinds
of proofs are traditionally proven using a big-step semantics, such as compiler
correctness proofs [LG09, NK14, HW07, BH15], while others are more natural to
model and prove using small-step semantics, such as bisimulation for languages
with interleaving [Mil82].

2.4.4 Natural semantics for λcbv

We consider the extension of our simple arithmetic expressions language with the call-
by-value λ -calculus, λcbv.
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Small-step Big-step

Number of rules 3+2 2

Number of premises 2+2 2

Table 2.2: Comparison of conciseness of small-step and big-step semantics for simple
arithmetic expressions

ExprNS 3 e ::= . . . | λx.e | e e | x Expressions

ValNS 3 v ::= . . . | 〈x,e,ρ〉 Values

x,y ∈ Var , {x,y, . . .} Variables

ρ ∈ Env, Var fin−→ ValNS Environments

Figure 2.26: Abstract syntax and semantic values for λcbv (extends Figure 2.24)

Abstract syntax. Figure 2.26 summarises the grammar for expressions and values.
As with simple arithmetic expressions, the syntactic sets ExprNS and ValNS are distinct.

Semantics. The natural semantics for the newly introduced terms is specified in Fig-
ure 2.27. Like in SOS, introducing the new constructs changes the structure of judg-
ments, which now incorporate an environment. The rules for the simple arithmetic
fragment of λcbv have been modified in Figure 2.27 to reflect this change.

The rules in Figure 2.27 are inductively defined. Thus, the rules only give semantics
for the set of programs that terminate.

Divergence. Cousot and Cousot [CC92] consider how to give and relate specifications
at different levels of abstraction. Their approach to formalising diverging terms is to
introduce a special ⊥ value to denote divergence, and add rules for all constructs that
propagate this value if it arises. Here, we follow Leroy and Grall [LG09] and give a
separately defined relation for divergence, which corresponds to the Cousots’ approach.
Figure 2.28 specifies such a coinductive divergence relation, which depends on the
ordinary inductive natural semantics relation for converging sub-computations.

While the inductive rules in Figure 2.27 implement arbitrary order of evaluation,
the divergence rules in Figure 2.28 freezes the evaluation order for diverging com-
putations to left-to-right order of evaluation. If we were to permit arbitrary order of
evaluation, extra rules are needed for cases such as the expression plus(e1,e2) where
e2 diverges before we do any evaluation of e1. Following Leroy and Grall [LG09],
we can prove that the coinductive divergence predicate describes the same set of di-
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ρ ` e1⇒ n1 ρ ` e2⇒ n2

ρ ` plus(e1,e2)⇒ n1 +n2
(NS-λcbv-Plus)

ρ ` num(n)⇒ n
(NS-λcbv-Num)

ρ ` λx.e⇒ 〈x,e,ρ〉 (NS-λcbv-Lam)

ρ ` e1⇒ 〈x,e,ρ ′〉 ρ ` e2⇒ v2 ρ ′[x 7→ v2] ` e⇒ v
ρ ` e1 e2⇒ v

(NS-λcbv-App)

x ∈ dom(ρ)

ρ ` x⇒ ρ(x)
(NS-λcbv-Var)

Figure 2.27: Natural semantics for λcbv

ρ ` e1
∞
=⇒

ρ ` plus(e1,e2)
∞
=⇒

(NS-λcbv-∞-Plus1)

ρ ` e1⇒ n ρ ` e2
∞
=⇒

ρ ` plus(e1,e2)
∞
=⇒

(NS-λcbv-∞-Plus2)

ρ ` e1
∞
=⇒

ρ ` e1 e2
∞
=⇒

(NS-λcbv-∞-App1)

ρ ` e1⇒ 〈x,e,ρ ′〉 ρ ` e2
∞
=⇒

ρ ` e1 e2
∞
=⇒

(NS-λcbv-∞-App2)

ρ ` e1⇒ 〈x,e,ρ ′〉 ρ ` e2⇒ v2 ρ ′[x 7→ v2] ` e ∞
=⇒

ρ ` e1 e2
∞
=⇒

(NS-λcbv-∞-App3)

Figure 2.28: Natural semantics divergence predicate for λcbv

40



2.4. Natural semantics

verging computations as the small-step ∞−→ predicate for the SOS rules that we saw in
Figures 2.6 and 2.8.

Proposition 2.7 ( ∞
=⇒ corresponds to ∞−→ for λcbv) The natural semantics and SOS for

λcbv describe the same set of diverging terms; i.e.:

source(e) =⇒ rsource(ρ) =⇒
(
rnsify(ρ) ` nsify(e) ∞

=⇒ ⇐⇒ ρ ` e ∞−→
)

where source(e), rsource(ρ) checks that expressions e ∈ Expr and ρ ∈ Env have corre-
sponding natural semantic source terms and environments; and nsify ∈ Expr→ ExprNS

and rnsify ∈ Env→ EnvNS translates SOS syntax to natural semantics syntax.

Proof. The proof follows the structure of Leroy and Grall’s [LG09, Theorem 11], and
relies on the fact that→ is deterministic. The full proof is in Appendix A.

We can also use the coinductively defined divergence predicate to prove that the
well-known self-applicative ω expression diverges.

Proposition 2.8 (ω diverges using natural semantics) The expression ω diverges, i.e.:

ρ ` ω
∞
=⇒

Proof. The proof is by guarded coinduction. By a single application of (NS-λcbv-∞-
App3) we get the goal:

ρ[x 7→ 〈x,x x,ρ〉] ` x x ∞
=⇒ (Goal)

Using this as our coinduction hypothesis, and applying (NS-λcbv-∞-App3) gives us a
new goal that is identical to (Goal) above. The new goal follows by applying the
coinduction hypothesis.

The big-step proof is more straightforward than the small-step proof by guarded
coinduction: big-step abstracts from intermediate small-steps, whereby the structure
of closures is irrelevant, and the coinduction hypothesis can be applied directly.

The natural semantics for λcbv with divergence is no longer more concise than SOS.
The rules for ⇒ and ∞

=⇒ contain duplication: for example, the premise ρ ` e1 ⇒ n1
describes the same computation in the same context in both rule (NS-λcbv-Plus) and
rule (NS-λcbv-∞-Plus2). There is similar duplication occurring in rules (NS-λcbv-App),
(NS-λcbv-∞-App2), and (NS-λcbv-∞-App3). Charguéraud [Cha13] calls this the dupli-
cation problem with natural semantics, and proposes a style of natural semantics that
alleviates the duplication. We recall Charguéraud’s pretty-big-step style in Section 2.5.
Table 2.3 compares the conciseness and duplication in the natural semantics and SOS
specifications of λcbv.

An alternative means of encoding divergence in natural semantics is to use trace-
based semantics. Leroy and Grall [LG09, Sect. 6.3] give trace-based big-step rules,

41



2. Operational Semantics in Theory and Practice

Small-step Big-step (without ∞
=⇒) Big-step (with ∞

=⇒)

Number of rules 9+3 5 10

Number of premises 5+4 5 14

Duplicate premises 0 0 4

Table 2.3: Comparison of conciseness of small-step and big-step semantics for λcbv

where separate relations are given for terminating and diverging traces. This rela-
tion suffers from a similar duplication problem as the problem recalled in this section.
Charguéraud proposes trace-based pretty-big-step semantics, which alleviates the du-
plication. Nakata and Uustalu [NU09] present an alternative solution that relies on a
single set of coinductively defined rules that subsumes both converging and diverging
computations and their traces, drawing inspiration from the partiality monad in type
theory [Cap05]. Nakata and Uustalu illustrate the use of traces on a simple imper-
ative while-language, but the technique scales to other programming language disci-
plines, such as call-by-value λ -calculus as investigated and demonstrated by Danielsson
[Dan12] who uses the partiality monad to give a functional operational semantics for
the call-by-value λ -calculus using mixed recursive/co-recursive functions in Agda.

2.4.5 Natural semantics for λ •cbv

Divergence is not the only language feature that gives rise to duplication in natural se-
mantics. We recall the traditional approach to specifying abrupt termination in natural
semantics, as used in, e.g., The Definition of Standard ML [MTHM97].

Abstract syntax. Figure 2.19 extends the abstract syntax for λcbv with constructs for
throwing and handling exceptions. Here, the catch construct differs slightly from the
catch construct we considered in connection with SOS: the expression catch(e1,x,e2)
explicitly indicates that e2 may have a free variable x which will be bound by the value
contained in an exception, if one occurs. The motivation for having the catch construct
deal with binding is that, following the convention in natural semantics, values and
expressions are distinct syntactic sorts, so an application such as e2 v is not a valid
expression in ExprNS.

In order to distinguish abrupt and ordinary termination, we introduce a new syn-
tactic set Outcome, which comprises exceptions and values.

Semantics. Figure 2.30 summarises the rules for the new constructs, which extend
the set of rules from Figure 2.27 by lifting their signature to have Outcome as codomain,
rather than Val. The signature of the resulting relation is⇒ ⊆ Env×ExprNS×Outcome.

In addition to the rules in Figure 2.30, we also need rules for propagating abrupt
termination, as well as rules for the coinductive divergence predicate for the extended
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ExprNS 3 e ::= . . . | throw(e) | catch(e,x,e) Expressions

Outcome 3 o ::= v | EXC(v)

Figure 2.29: Abstract syntax and semantic values for λ •cbv (extends Figure 2.26)

ρ ` e⇒ v
ρ ` throw(e)⇒ EXC(v)

(NS-λ •cbv-Throw)

ρ ` e1⇒ v1

ρ ` catch(e1,x,e2)⇒ v1
(NS-λ •cbv-CatchV)

ρ ` e1⇒ EXC(v) ρ[x 7→ v] ` e2⇒ o
ρ ` catch(e1,x,e2)⇒ o

(NS-λ •cbv-CatchE)

Figure 2.30: Natural semantics for λ •cbv (extends Figure 2.27)

language. Figure 2.31 specifies the exception propagation rules, and Figure 2.32 ex-
tends the previously defined rules for the divergence predicate to give the semantics of
diverging terms for the newly introduced constructs.

We can observe that abrupt termination further aggravates the duplication problem
with natural semantics. Standard ML side-steps the issue with exception propagation
rules by the “exception convention” [MTHM97, p. 47], which implicitly generates
exception propagation rules for all constructs except the catch construct. Although
this convention is intuitively clear, the rules typically need spelling out in full detail in
proof assistants such as Coq or Agda, and they clutter the rule induction hypothesis
used to prove properties about relations.

Extending the natural semantics with stores and references to give a natural se-
mantics for the λ •cbv+ref corresponding to the SOS in Section 2.2.6 is straightforward.
The traditional approach, used in, e.g., The Definition of Standard ML [MTHM97], is
to thread a store through all premises in existing rules from left-to-right (although The
Definition leaves the threading of such premises implicit in rules – this is known as the
“state convention” [MTHM97, p. 46]).

The duplication problem that natural semantics for languages with divergence and
abrupt termination suffers from is alleviated by pretty-big-step semantics.

2.5 Pretty-big-step semantics

Charguéraud’s [Cha13] proposed pretty-big-step semantics factors big-step rules into
rules with at most two premises. This allows divergence and abrupt termination to be
propagated with less duplication.
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ρ ` e1⇒ EXC(v)
ρ ` plus(e1,e2)⇒ EXC(v)

(NS-λ •cbv-Exc-Plus1)

ρ ` e1⇒ n ρ ` e2⇒ EXC(v)
ρ ` plus(e1,e2)⇒ EXC(v)

(NS-λ •cbv-Exc-Plus2)

ρ ` e1⇒ EXC(v)
ρ ` e1 e2⇒ EXC(v)

(NS-λ •cbv-Exc-App1)

ρ ` e1⇒ 〈x,e,ρ ′〉 ρ ` e2⇒ EXC(v)
ρ ` e1 e2⇒ EXC(v)

(NS-λ •cbv-Exc-App2)

ρ ` e1⇒ 〈x,e,ρ ′〉 ρ ` e2⇒ v2 ρ ′[x 7→ v2] ` e⇒ EXC(v)
ρ ` e1 e2⇒ EXC(v)

(NS-λ •cbv-Exc-App3)

ρ ` e⇒ EXC(v)
ρ ` throw(e)⇒ EXC(v)

(NS-λ •cbv-Exc-Throw)

Figure 2.31: Natural semantic abrupt termination rules for λ •cbv (extends Figure 2.27)

ρ ` e ∞
=⇒

ρ ` throw(e) ∞
=⇒

(NS-λ •cbv-∞-Throw)

ρ ` e1
∞
=⇒

ρ ` catch(e1,x,e2)
∞
=⇒

(NS-λ •cbv-∞-CatchV)

ρ ` e1⇒ EXC(v) ρ[x 7→ v] ` e2
∞
=⇒

ρ ` catch(e1,x,e2)
∞
=⇒

(NS-λ •cbv-∞-CatchE)

Figure 2.32: Natural semantic divergence predicate for λ •cbv (extends Figure 2.28)

2.5.1 Pretty-big-step semantics for simple arithmetic expressions

We consider how to give pretty-big-step semantics for simple arithmetic expressions.

Abstract syntax. Pretty-big-step semantics introduces a new notion of intermediate
expressions that are not valid input programs, but that record semantic information
used in derivation rules. Intermediate expressions serve several purposes:

• they permit matching against the outcome of sub-terms such that evaluation only
continues if abrupt termination or divergence does not occur; and

• they ensure derivation trees constructed using pretty-big-step rules are produc-
tive.
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e ∈ ExprNS Expressions (as in Figure 2.24)

v ∈ ValNS Values (as in Figure 2.24)

IntmExpr 3 E ::= e | plus1(o,e) | plus2(v,o) Intermediate expressions

OutcomePBS 3 o ::= v Outcomes

Figure 2.33: Abstract syntax, values, and outcomes for simple arithmetic expressions

e1 ⇓ o1 plus1(o1,e2) ⇓ o
plus(e1,e2) ⇓ o

(PBS-Plus)

e2 ⇓ o2 plus2(o1,o2) ⇓ o
plus1(o1,e2) ⇓ o

(PBS-Plus1)

plus2(n1,n2) ⇓ n1 +n2
(PBS-Plus2)

num(v) ⇓ n
(PBS-Num)

Figure 2.34: Pretty-big-step semantics for simple arithmetic expressions

The second of these roles is important when we consider the coinductive interpretation
of rules. We illustrate why this is the case shortly. First, we introduce pretty-big-step
rules for simple arithmetic expressions.

Figure 2.33 summarises the abstract syntax of expressions, intermediate expres-
sions, and outcomes. For simple arithmetic expressions, the only notion of outcome is
values. When we consider its extension with the λ -calculus in Section 2.5.2, the set of
outcomes will be augmented with divergence.

Semantics. Figure 2.34 summarises the rules for the pretty-big-step relation ⇓ ∈
IntmExpr×OutcomePBS. Each rule has at most two premises that do evaluation. In
the rules (PBS-Plus) and (PBS-Plus1), the first premise fully evaluates a sub-term to its
outcome, and the second premise constructs an intermediate expression, which contin-
ues evaluation if the first sub-expression did not abruptly terminate or diverge.

A feature of pretty-big-step rules is that they have a dual interpretation: they have
both an inductive and a coinductive interpretation, and permits reasoning about both
converging and diverging computations using the same set of rules. Consider the fol-
lowing reflexive rule for values:

v ⇓ v
(PBS-ReflV)
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e ∈ ExprNS Expressions (as in Figure 2.26)

v ∈ ValNS Values (as in Figure 2.26)

IntmExpr 3 E ::= ... | app1(o,e) | app2(v,o) Semantic expressions

OutcomePBS 3 o ::= v | DIV Outcomes

Figure 2.35: Abstract syntax, values, and outcomes for λcbv (extending Figure 2.33)

If we add this rule to the coinductive interpretation of the relation for simple arithmetic
expressions, we would be able to construct an infinite derivation tree for the expression
plus(num(1),num(2)):

num(1) ⇓ 1
1 ⇓ 1

...
plus(1,num(2)) ⇓ 42

plus(1,num(2)) ⇓ 42
plus(num(1),num(2)) ⇓ 42

In other words, we could prove that adding 1 and 2 diverges. The use of intermediate
expressions in the pretty-big-step rules in Figure 2.34 avoids such issues.

Comparing with the natural semantics in Section 2.4.2, pretty-big-step uses more
rules and premises for semantics without divergence or abrupt termination.

2.5.2 Pretty-big-step semantics for λcbv

Extending simple arithmetic expressions with the call-by-value λ -calculus introduces
the possibility of divergence.

Abstract syntax. The abstract syntax is summarised in Figure 2.35, which gives two
new intermediate expression constructs for application, and augments the notion of
outcome with a new term DIV for indicating divergence.

Semantics. Like natural semantics and SOS, the extension involves modifying rules
to propagate the environment. Figure 2.36 summarises the rules for ordinary eval-
uation by means of the pretty-big-step relation ⇓ ∈ Env× IntmExpr×OutcomePBS. In
addition to these rules, we follow Charguéraud and introduce rules for propagating
divergence. The rules are summarised in Figure 2.37.

As mentioned, pretty-big-step rules have a dual interpretation: they have both an
inductive and a coinductive interpretation, and permits reasoning about both converg-
ing and diverging computations using the same set of rules.
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ρ ` e1 ⇓ o1 ρ ` plus1(o1,e2) ⇓ o
ρ ` plus(e1,e2) ⇓ o

(PBS-λcbv-Plus)

ρ ` e2 ⇓ o2 ρ ` plus2(v1,o2) ⇓ o
ρ ` plus1(v1,e2) ⇓ o

(PBS-λcbv-Plus1)

ρ ` plus2(n1,n2) ⇓ n1 +n2
(PBS-λcbv-Plus2)

ρ ` λx.e ⇓ 〈x,e,ρ〉 (PBS-λcbv-Lam)

ρ ` e1 ⇓ o1 ρ ` app1(o1,e2) ⇓ o
ρ ` e1 e2 ⇓ o

(PBS-λcbv-App)

ρ ` e2 ⇓ o2 ρ ` app2(v1,o2) ⇓ o
ρ ` app1(v1,e2) ⇓ o

(PBS-λcbv-App1)

ρ ′[x 7→ v2] ` e ⇓ o
ρ ` app2(〈x,e,ρ ′〉,v2) ⇓ o

(PBS-λcbv-App2)

Figure 2.36: Pretty-big-step semantics for λcbv

ρ ` plus1(DIV,e2) ⇓ DIV
(PBS-λcbv-Div-Plus1)

ρ ` plus2(n1,DIV) ⇓ DIV
(PBS-λcbv-Div-Plus2)

ρ ` app1(DIV,e2) ⇓ DIV
(PBS-λcbv-Div-App1)

ρ ` app2(〈x,e,ρ ′〉,DIV) ⇓ DIV
(PBS-λcbv-Div-App2)

Figure 2.37: Pretty-big-step divergence rules for λcbv
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Divergence. Using the rules in Figures 2.36 and 2.37, we cannot construct a finite
derivation tree that produces DIV as outcome. It follows that, if we can prove (us-
ing coinduction) that there is a derivation tree whose outcome is DIV, that derivation
tree must be a diverging computation. We recall some facts about the relationship
between the inductive and coinductive interpretation of pretty-big-step rules, follow-
ing Charguéraud [Cha13]. We use ⇓co to refer to the coinductive interpretation of the
specified pretty-big-step relation, and ⇓ to refer to the inductive one.

Proposition 2.9 (λcbv does not diverge inductively) For any finite derivation tree, it
holds that the outcome of evaluation is not DIV; i.e.:

ρ ` e ⇓ o =⇒ o 6= DIV

Proof. Trivial, since ⇓co is just the coinductive interpretation of ⇓.

Proposition 2.10 (Coinductive subsumes inductive) Any finite derivation tree is con-
tained in the coinductive interpretation, i.e.:

ρ ` e ⇓ o =⇒ ρ ` e ⇓co o

Proof. The proof is by straightforward rule induction.

A consequence of Propositions 2.9 and 2.10 is that, if it holds that ρ ` e ⇓co
DIV,

then we know that the expression e diverges in ρ. On the other hand, if ρ ` e ⇓co v, it
is either the case that e is a convergent computation that produces a value v, or that it
diverges. This intuition is captured formally by Proposition 2.12.

Lemma 2.11
ρ ` e ⇓co o =⇒ ¬(ρ ` e ⇓ o) =⇒ ρ ` e ⇓co

DIV

Proof. Using the goal as our coinduction hypothesis, the proof proceeds by inversion on
the first hypothesis. Each case that does not follow trivially (e.g., because the second
hypothesis trivially holds) follows by invoking the law of excluded middle on whether
or not each sub-derivation diverges or not. We consider the case for rule (PBS-λcbv-
App1); the remaining cases follow a similar pattern. In Chapter 4 of this thesis, we
prove that this lemma holds for any semantics whose rules match a set of rule schemas,
and consider a variant of the pretty-big-step semantics for λcbv which adheres to this
schema.

Case (PBS-λcbv-Plus1) From inversion and the rule we have:

ρ ` e1 ⇓co o1 (H1)

ρ ` plus1(o1,e2) ⇓co o (H2)

¬(ρ ` plus(e1,e2) ⇓ o) (H3)
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The coinduction hypothesis is:

∀ρ e o. ρ ` e ⇓co o =⇒ ¬(ρ ` e ⇓ o) =⇒ ρ ` e ⇓co
DIV (CIH)

The goal is:
ρ ` plus(e1,e2) ⇓co

DIV (Goal)

We invoke the law of excluded middle on ρ ` e1 ⇓ o1. We consider the negative case
first:

Subcase (¬P) We apply the rule (PBS-λcbv-Plus). The first premise of the rule follows
from the coinduction hypothesis, ¬P, and (H1).

The second premise of the rule trivially follows from the (PBS-λcbv-Div-Plus1) rule.

Subcase (P) We reason by the law of excluded middle on ρ ` plus1(o1,e2) ⇓ o. We
consider the negative case first

Subsubcase (¬P′) The goal follows by applying the rule (PBS-λcbv-Plus), (H1), the
coinduction hypothesis, and ¬P′.

Subsubcase (P′) The hypothesis (H3) becomes a contradition, since P and P′ imply
that plus(e1,e2) converges.

Proposition 2.12 (Coinductive implies termination or divergence) For any derivation
tree in the coinductive interpretation, there is either a corresponding finite derivation
tree in the inductive interpretation, or the derivation tree is infinite and we can con-
struct a corresponding infinite tree whose outcome is DIV:

ρ ` e ⇓co o =⇒ ρ ` e ⇓ o ∨ ρ ` e ⇓co
DIV

Proof. We reason by the law of excluded middle on ρ ` e ⇓ o. Calling this proposition
P, there are two cases to consider.

Case (P) The left disjunctive goal holds trivially.

Case (¬P) By Lemma 2.11, we get that ρ ` e ⇓co
DIV, from which the right disjunctive

goal follows.

2.5.3 Pretty-big-step semantics for λ •cbv

Extending pretty-big-step semantics with abrupt termination does not introduce dupli-
cation in rules.
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e ∈ ExprNS Expressions (as in Figure 2.29)

v ∈ ValNS Values (as in Figure 2.29)

IntmExpr 3 E ::= ... | throw1(o) | catch1(o,x,e) Semantic expressions

OutcomePBS 3 o ::= . . . | EXC(v) Outcomes

Figure 2.38: Abstract syntax, values for λ •cbv (extending Figure 2.35)

ρ ` e ⇓ o ρ ` throw1(o) ⇓ o′

ρ ` throw(e) ⇓ o′
(PBS-λ •cbv-Throw)

ρ ` throw(v) ⇓ EXC(v)
(PBS-λcbv-Throw1)

ρ ` e1 ⇓ o1 ρ ` catch1(o1,x,e2) ⇓ o
ρ ` catch(e1,x,e2) ⇓ o

(PBS-λ •cbv-Catch)

ρ ` catch1(v1,x,e2) ⇓ v1
(PBS-λ •cbv-CatchV)

ρ[x 7→ v1] ` e2 ⇓ o2

ρ ` catch1(EXC(v1),x,e2) ⇓ o2
(PBS-λ •cbv-CatchE)

Figure 2.39: Pretty-big-step semantics for λ •cbv

Abstract syntax. Figure 2.38 summarises the necessary extra intermediate expression
constructors for throwing and catching exceptions. The notion of outcome is also
augmented with exceptions, EXC(v).

Semantics. Following Charguéraud [Cha13], exceptions can be propagated in the
same way as divergence by generalising the divergence rules from Figure 2.37 into so-
called ‘abort’ rules, and introducing an abort predicate for deciding whether evaluation
should continue. Figure 2.39 summarises the rules for ordinary evaluation of throw
and catch, while Figure 2.40 specifies abort rules and the abort predicate. The rules
that rely on the abort predicate and the rules for the predicate itself are somewhat te-
dious to both read and write, but Charguéraud proposes that they can be automatically
generated.

It is also possible to give pretty-big-step semantics for ML-style references. Ap-
pendix C.1 recalls a pretty-big-step semantics for λ •cbv+ref reminiscent of the one con-
sidered by Charguéraud [Cha13].

Pretty-big-step semantics provides a means of minimising the duplication resulting
from divergence and abrupt termination in natural semantics. However, for languages
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Abort predicate.

abort(DIV)
(Abort-Div)

abort(EXC(v))
(Abort-Exc)

Abort rules.

abort(o1)

ρ ` plus1(o1,e2) ⇓ o1
(PBS-λ •cbv-Abort-Plus1)

abort(o2)

ρ ` plus2(n1,o2) ⇓ o2
(PBS-λ •cbv-Abort-Plus2)

abort(o1)

ρ ` app1(o1,e2) ⇓ o1
(PBS-λ •cbv-Abort-App1)

abort(o2)

ρ ` app2(〈x,e,ρ ′〉,o2) ⇓ o2
(PBS-λ •cbv-Abort-App2)

abort(o)
ρ ` throw1(o) ⇓ o

(PBS-λ •cbv-Abort-Throw)

Figure 2.40: Pretty-big-step abort rules for λ •cbv

without divergence or abrupt termination, the pretty-big-step style uses more rules and
premises. It also suffers from the same shortcomings as SOS and natural semantics:
introducing a new auxiliary entity involves modifying rules in order to propagate it.
This problem is avoided with big-step Modular SOS.

2.6 Big-step Modular SOS

Modular SOS has a big-step counterpart that avoids the problem with modifying rules
to propagate auxiliary entities. A caveat is that the technique for specifying modular
abrupt termination does not directly translate to big-step MSOS. We recall how to give
big-step MSOS specifications, and why the modular abrupt termination technique does
not translate.

2.6.1 Big-step MSOS for λcbv

The λcbv language does not have abrupt termination, and it is straightforward to give a
big-step MSOS specification for the language.
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e1
`1−→ n1 e2

`2−→ n2

plus(e1,e2)
`1 # `2−−−→ n1 +n2

(BMSOS-λcbv-Plus)

num(n)
{—}−−→ n

(BMSOS-λcbv-Num)

λx.e
{env=ρ,—}−−−−−−−→ 〈x,e,ρ〉

(BMSOS-λcbv-Lam)

e1
{env=ρ,...1}−−−−−−−→ 〈x,e,ρ ′〉 e2

`−→ v2 e
{env=ρ ′[x 7→v2],...2}−−−−−−−−−−−→ v

e1 e2
{env=ρ,...1} # ` # {env=ρ,...2}−−−−−−−−−−−−−−−−−→ v

(BMSOS-λcbv-App)

x ∈ dom(x)

x
{env=ρ,—}−−−−−−−→ ρ(x)

(BMSOS-λcbv-Var)

Figure 2.41: Big-step MSOS for λcbv

Abstract syntax. The abstract syntax is the same as the one we considered in con-
nection with natural semantics in Figure 2.26.

Semantics. The semantics for λcbv is straightforward to specify using MSOS labels in-
stead of auxiliary entities. Auxiliary entities are propagated between big-step premises
by insisting that premises that are evaluated consecutively have labels that are com-
posable. In the case of labels for λcbv, where the only label component is environments,
labels are composable when the environment components are equal. Figure 2.41 gives
big-step MSOS rules for λcbv.

A difference between small-step and big-step MSOS is that label composition op-
erations become ubiquitous in rules. This makes rules appear somewhat unfamiliar to
the uninitiated. Another issue with big-step MSOS is that the technique for modular
abrupt termination in small-step MSOS does not translate.

2.6.2 The problem with big-step modular abrupt termination

We illustrate the problem with translating the modular abrupt termination technique
to big-step MSOS.

Abstract syntax. The natural semantic abstract syntax for big-step MSOS is identical
to the one in Figure 2.29. Additionally, we introduce the syntactic set Exc, summarised
in Figure 2.42, for indicating in labels whether an exception occurs or not.

Semantics. The rules in Figure 2.43 give a naive translation of the technique for
modular abrupt termination from Section 2.3.4. Like we did with the small-step MSOS
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Exc 3 ε ::= OK | EXC(v)

Figure 2.42: Abstract syntax for λ •cbv (extending Figure 2.30)

e
{exc′=OK,...}−−−−−−−→ v

throw(e)
{exc′=EXC(v),...}−−−−−−−−−→ stuck

(BMSOS-Throw)

e
{exc′=EXC(v),...}−−−−−−−−−→ v

throw(e)
{exc′=EXC(v),...}−−−−−−−−−→ v

(BMSOS-Throw-Exc)

e1
{exc′=OK,...}−−−−−−−→ v

catch(e1,x,e2)
{exc′=OK,...}−−−−−−−→ v

(BMSOS-Catch)

e1
{env=ρ,exc′=EXC(v),...1}−−−−−−−−−−−−−−→ v1 e2

{env=ρ[x 7→v],...2}−−−−−−−−−−→ v2

catch(e1,x,e2)
{exc′=OK,...1} # {env=ρ,...2}−−−−−−−−−−−−−−−−→ v

(BMSOS-Catch)

e
{exc′=OK,...}−−−−−−−→ v

program(e)
{exc′=OK,...}−−−−−−−→ v

(BMSOS-ProgramV)

e
{exc′=EXC(v),...}−−−−−−−−−→ v0

program(e)
{exc′=OK,...}−−−−−−−→ v

(BMSOS-ProgramE)

Figure 2.43: Big-step MSOS for λ •cbv

for λ •cbv in Section 2.3.4, we have extended the product category that describes labels
using the exc′ write-only label component. Following Mosses [Mos04], the rules in
Figure 2.20 are inductively defined, and thus describe only converging computations.

The semantics in Figure 2.43 does not propagate abrupt termination correctly. Con-
sider the expression:

program(plus(seq(throw(0),num(1)),ω))

where seq(e1,e2) , (λ .e2) e1. The big-step MSOS rule (BMSOS-λcbv-Plus) evaluates
the first sub-expression of plus to the natural number 1, since:

seq(throw(0),num(1))
{exc′=EXC(0),—}−−−−−−−−−−→ 1

The problem is that the second premise of (BMSOS-λcbv-Plus) does not inhibit fur-
ther evaluation. Since exceptions are encoded as “write-only” entities (i.e., as a free
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DJ•K ∈ N

DJplus(e1,e2)K, DJe1K+DJe2K

DJnK, n

Figure 2.44: Denotational semantics of simple arithmetic expressions

monoid), evaluation continues to evaluate the second branch of the program, which
is a divergent computation.3 In other words, abrupt termination is not abruptly ter-
minating using the naive translation to big-step of the technique for modular abrupt
termination. We analyse the problem in Chapter 3, and propose extensible transition
system semantics as a solution.

2.7 Modularity in Denotational Semantics

Previous sections described how Modular SOS provides a means of obtaining modular-
ity in Structural Operational Semantics. In this section we recall how monads provide
support for modularity in denotational semantics.

2.7.1 Lack of Modularity in Denotational Semantics

We first consider how to give a denotational semantics for simple arithmetic expres-
sions, and how to extend it to λcbv.

Simple arithmetic expressions. Figure 2.44 defines a denotational semantics for
simple arithmetic expressions. The semantics is given by a denotation function, which
translates program expressions into natural numbers.

Extension to λcbv. We extend the denotational semantics for simple arithmetic ex-
pressions to λcbv using environments and closures. Figure 2.45 specifies the updated
denotation function. The updated function differs from the one for simple arithmetic
expressions in the following ways:

• Updated signature: the new denotation function is parameterized by an environ-
ment, and either returns an actual value (either a closure or a natural number, as
defined in Figure 2.5) or a value in Wrong, {Ω}.

• Threading of environments: denotations are now parameterised by environments.

3We cannot give a direct proof of divergence using the inductive big-step MSOS rules, so the program
above fails to evaluate.
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DJ•K ∈ Env→ Val+Wrong

DJplus(e1,e2)Kρ , case DJe1K(ρ) of
| n1⇒ case DJe2K(ρ) of

| n2⇒ n1 +n2

| ⇒Ω

| ⇒Ω

DJnKρ , n

DJxKρ , case x ∈ dom(ρ) of
| >⇒ ρ(x)
| ⇒Ω

DJλx.eKρ , 〈x,e,ρ〉

DJe1 e2Kρ , case DJe1K(ρ) of
| 〈x,e,ρ ′〉 ⇒ case DJe2K(ρ) of

| v2⇒ DJeK(ρ ′[x 7→ v2])

| ⇒Ω

| ⇒Ω

Figure 2.45: Denotational semantics of λcbv

• Checks for well-definedness: addition is only well-defined for natural numbers, and
application is only well-defined for functions. The updated denotation function
uses case-distinctions to distinguish well-defined from undefined (or “wrong”)
operations.

The denotation of variables uses case distinction on the propositional truth of x ∈
dom(ρ), where we use > to denote truth.

Lack of modularity. All denotations were modified in order to extend the semantics
of simple arithmetic expressions to λcbv, both by introducing environment parameters
for denotations, and case distinctions for “wrong”ness.

If we were to consider a similarly naive extension to λcbv+ref (i.e., introducing
stores), this would require even more modifications of similar nature: denotations
should be parameterised by stores, and the outcome of evaluation should also return
stores. Instead of illustrating this non-modular, naive extension, we recall how monads
provide a solution to the modularity problem with denotational semantics.
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DJ•K ∈M Val

DJplus(e1,e2)K, DJe1K�=
Λv1. DJe2K�=

Λv2. case v1,v2 of
| n1,n2⇒ n1 +n2

DJnK, ret n

Figure 2.46: Denotational semantics using monads for simple arithmetic expressions

2.7.2 Denotational Semantics using Monads

Monads were proposed by Moggi [Mog89, Mog91] as a way of structuring denotational
semantic descriptions. The central idea is to express variations under extension as a
monad, i.e., a domain M parameterised by the domain being extended. We illustrate
how to give a monadic semantics for simple arithmetic expressions.

Simple arithmetic expressions. In anticipation of future extensions, let Val, N. We
let the signature for the denotation function be:

DJ•K ∈M Val

A monad M is equipped with two functions:

• ret ∈ A→M A, sometimes called the “return” or “unit” of the monad; and

• �= ∈ M A→ (A→ M B)→ M B, sometimes called the “bind” of the monad,
usually written in infix style, such that we write m�= f for some m ∈M A and
f ∈ (A→M B), .

These functions should satisfy the following monad laws, where we use Λ for meta-level
functions:

• Left identity: ret a�= f = f a

• Right identity: m�= ret = m

• Associativity: (m�= f )�= g = m�= (Λa. f a�= g)

We can use monads to structure the denotational semantics for simple arithmetic ex-
pressions as illustrated in Figure 2.46.

For example, we can define the variation when adding environments and the possi-
bility of “going wrong” as a monad, by letting M = ΛA. Env→ A+Wrong, and defining
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DJ•K ∈M Val

DJxK, lookup x

DJe1 e2K, DJe1K�=
Λv1. DJe2K�=

Λv2. case v1,v2 of
| 〈x,e,ρ ′〉,v2⇒ (inEnv ρ

′[x 7→ v2] DJeK)
| , ⇒ err

DJnK, ret n

lookup ∈ Var→M Val

inEnv ∈ Env→M Val→M Val

err ∈M Val

Figure 2.47: Denotational semantics using monads for λcbv (extends Figure 2.46)

return and bind as:

ret ∈ A→ (Env→ A+Wrong)

ret a, Λρ. a

�= ∈ (Env→ A+Wrong)→ (A→ Env→ B+Wrong)→ Env→ B+Wrong

m�= f , Λρ. case m ρ of
|Ω⇒Ω

| a⇒ f a ρ

This monad ensures that environments and wrong values are correctly propagated
when the monadic semantics for simple arithmetic expressions is extended to λcbv.

Extension to λcbv. Figure 2.47 summarises the monadic denotations λcbv. Denota-
tions rely on two auxiliary functions, inEnv and err, whose implementation is left open
in the figure. We could choose to define these functions naively, by using knowledge
about M:

lookup, Λρ. case x ∈ dom(x) of >⇒ ρ(x) | ⇒Ω

inEnv, Λρ. Λm. m ρ

err , Λρ. Ω
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However, if we extend the language further, we potentially have to modify these func-
tions; e.g., if we extend with stores. Monad transformers provide a means of avoiding
such issues.

Monad transformers [LHJ95, Mog90] provide a well-defined way of composing
monads and “lifting” functions across composed monads. Following [LHJ95], a monad
transformer is given by a domain T parameterised by a domain M, such that both M and
T M are monads. A monad transformer is equipped with a function lift ∈M A→ T M A
that satisfies the following laws:

• liftT ◦unitM = unitT M

• liftT (m�=M f ) = (liftT M m)�=T M (liftT ◦ f )

Using monad transformers, we can add features without changing the meaning of the
monad being transformed. For example, we can express the monad M for λcbv as
a series of monad transformers, starting with the identity monad, i.e., M , ΛA. A,
and extending it in two steps, using a monad transformer for possible-error (also
known as the maybe monad transformer), TError , ΛM. ΛA. (M A) + Wrong, and a
monad transformer for environments (also known as the reader monad transformer),
TEnv , ΛM. ΛA. Env→M A. The lift operation of monad transformers makes it possible
to lift operations, such as inEnv and err, without modifying the definitions themselves
as specifications are further extended. Following Liang et al. [LHJ95], such lifting can
be specified and implemented using type classes, known from Haskell [Mar10].

Monad transformers and commutativity. Monads and monad transformers provide
a flexible and powerful means of giving modular semantic specifications. For example,
there are monads for modeling abrupt termination (using a maybe or error monad),
stateful stores (using a state monad), partiality (using the partiality monad [Cap05]),
continuations (using a continuation monad), interleaving (using a resumption monad
[PG14, TA03]), etc. But with power comes responsibility: the order in which monads
are applied has semantic significance.

For example, consider we want to extend a semantics with state and abrupt ter-
mination, using the maybe monad transformer TError, and a state monad transformer
TState , ΛM. ΛA. S→ (M A×S). If we transform a monad first with state, and then with
errors, the resulting monad is:

TError (TState (M A)), (S→ (M A×S)+Wrong

But what if we want the possibility of catching and handling errors? Error handlers
would then have to synthesise the state in which evaluation should continue after an
error is detected and handled, since errors do not record the state when an error occurs!

In contrast, if we commute the order of application for the two monad transformers:

TState (TError (M A)), (S→ ((M A+Wrong)×S)
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Now, erroneous outcomes are given by pairs consisting of an element in Wrong and a
state in S. Thus, the semantics of a construct for handling errors can preserve the state
s in which the error occurred. This corresponds to the semantics for catch consid-
ered in Section 2.3. Supporting this semantics is only possible if we compose monad
transformers in the right order.

2.7.3 Discussion

Monads bring modularity to denotational semantic specifications. They have also be-
come widely adopted for functional programming, in part due to influential papers
by Wadler [Wad92, Wad95] advocating their usefulness, and Haskell’s [Mar10] built-
in support for monads. Monads are also becoming a subject of study for mechanised
theorem proving; both as a means of representing certain semantic features in a func-
tional style admitted by proof assistants [Dan12], but also as a means to modularity
[DKSO13].

In spite of the relative success of monads and monad transformers, they do have
some pitfalls, such as the commutative monad transformer problem. Comparing with
small-step (M)SOS rules, supporting interleaving with monads is also more compli-
cated. Section 2.2.3 shows how it is easy to give interleaving semantics; in contrast,
support for interleaving in denotational and monadic semantics relies on more compli-
cated constructions, such as powerdomains [Plo76] or resumptions [PG14].

Monads are inherently on higher-order. This makes them flexible, but also removes
them from the goals of SOS [Plo81, Section 1.1], which is based on “simple” mathemat-
ics. MSOS stays closer to this goal: in spite of its theoretical underpinnings, extending
a semantics with new entities relies on syntactically extending a set of rules and a prod-
uct category. In spite of this difference, the basic categories used in MSOS [Mos04] can
all be modeled by commutative monad transformers. This fact can be seen as both a
strength and a weakness: it avoids the commutative monad transformer problem and
makes the order in which one extends a semantics irrelevant, which can be seen as a
strength. It can also be seen as a weakness, since it is less flexible. However, small-step
MSOS has been shown to provide a simple basis for both abrupt termination [Mos04]
and continuations [STM16].

In this thesis we focus mainly on relational semantics, and leave to future work
an investigation of how to bring to MSOS the flexibility of monads; and vice versa,
whether we can avoid the commutative monad problem by using ideas from MSOS.
For example, Chapter 3 of this thesis presents a technique for giving semantics for both
abrupt termination and continuations (as shown in Chapter 4) in a way that seems to
correspond to a commutative monad transformer.

2.8 Reduction semantics

Reduction semantics with evaluation contexts were introduced in Felleisen’s thesis as
“a symbolic reasoning system for the core of expressive languages” [Fel87, p. 3]. Re-
duction semantics comprise:
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E ::= [ ] | plus(E,e) | plus(n,E)

Figure 2.48: Evaluation context specification for simple arithmetic expressions

plus(n1,n2)−→ n1 +n2
(RS-Plus)

e−→ e′

E[e] 7−→ E[e′]
(RS-DCR)

Figure 2.49: Contraction relation for simple arithmetic expressions

• an abstract syntax specification;

• an evaluation context specification that for a given term defines its set of possible
decompositions into an evaluation context and a reducible expression (redex);
and

• a contraction relation for contracting a redex into a new term.

We recall how reduction semantics are used to specify programming languages by sum-
marising relevant fragments of Felleisen and Wright’s [WF94] reduction semantics for
an ML-like example language similar to the one considered in the previous sections of
this chapter.

2.8.1 Reduction semantics for simple arithmetic expressions

We define the abstract syntax and notion of contraction for simple arithmetic expres-
sions, and illustrate how these suffice to perform computations.

Abstract syntax. The abstract syntax of simple arithmetic expressions is the same as
the one considered in connection with SOS; see Figure 2.1.

Notion of contraction. Figure 2.48 specifies the evaluation contexts for simple arith-
metic expressions, where [ ] represents the empty context. We use E[e] to denote the
term resulting from plugging (or recomposing) the term e into the hole of E.

The rules in Figure 2.49 define the notion of contraction for simple arithmetic ex-
pressions. The rules specify two relations: (RS-Plus) specifies −→ for contracting plus

redexes, and (RS-DCR) specifies 7−→ for: decomposing a term into a reduction context
E and a reducible expression e; contracting e into e′ using −→; and recomposing e′

back into the current evaluation context to construct a new term.
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Expr 3 e ::= e e

Val 3 v ::= λx.e | x

x,y ∈ Var , {x,y, . . .}

Figure 2.50: Abstract syntax for λ -calculus

Reduction semantic specifications are more concise than SOS and MSOS, since so-
called congruence rules (e.g., rules like (SOS-Plus1 and (SOS-Plus2) in Section 2.2.2)
are subsumed by the (RS-DCR) rule.

Using the rules, an expression such as plus(plus(1,1),3) decomposes into a context
plus([ ],3) and redex plus(1,1). Taking the reflexive transitive closure of 7−→, we can
thus evaluate plus(plus(1,1),3) using the following sequence of reduction steps:

plus(plus(1,1),3)
7−→ plus(2,3)
7−→ 5

2.8.2 Reduction semantics for call-by-value λ -calculus

Another significant difference between reduction semantics and the purely structural
semantics frameworks recalled in earlier sections of this chapter is that reduction se-
mantics often use meta-level substitution instead of explicit environments.4 This dif-
ference is apparent in the reduction semantics for the call-by-value λ -calculus.

Abstract syntax. Unlike previous approaches, reduction semantics uses meta-level
substitution, so there is no need for explicit closures in the abstract syntax. The abstract
syntax for the call-by-value λ -calculus is given by the grammar in Figure 2.50.

Notion of contraction. Figure 2.51 specifies the evaluation contexts and reduction
rules for the call-by-value λ -calculus. In the figure, the notation e[x← v] denotes meta-
level substitution, which replaces all free occurrences of x by v. This relies on the
traditional distinction between free and bound variables in λ -calculus. The following
definitions of free variables and substitution are adapted from Pierce’s [Pie02, Defini-
tion 5.3.2 and 5.3.5].

4It is common in the literature to see substitution used, but seldom formally defined, in SOS and
natural semantics too.

61



2. Operational Semantics in Theory and Practice

E ::= [ ] | E e | v E

(λx.e) v−→ e[x← v] (RS-App)

e−→ e′

E[e] 7−→ E[e′]
(RS-DCR)

Figure 2.51: Evaluation contexts and reduction rules for λ -calculus

Definition 2.13 (Free variables) The set of free variables of an expression e, written
FV (e), is defined as follows:

FV (x), {x}

FV (λx.e), FV (e)\{x}

FV (e1 e2), FV (e1)∪FV (e2)

Definition 2.14 (Capture-avoiding substitution) The following rules define substitu-
tions:

x[x← e], e

y[x← e], y if y 6= x

(e1 e2)[x← e], e1[x← e] e2[x← e]

(λy.e1)[x← e2], λy.e1[x← e2] if y 6= x and y 6∈ FV (e2)

If the condition for applying substitution under λ is not met, a function should be
α-converted (Definition 2.15) in order to make the substitution applicable.

Definition 2.15 (α-conversion)

λx.e1 , λy.e1[x← y] where y 6∈ FV (e1)

While the conventions for substitution summarised above are completely standard
(following, e.g., Pierce [Pie02, Chapter 5] or Barendregt [Bar84, Chapter 2]), they still
play a crucial part of the formalisation, and if new binding constructs are added, such
as let-expressions, the definitions of free variables and substitution must be extended
accordingly, and proofs involving these must be extended accordingly. Such concerns
are avoided when using closures with explicit substitution, although we saw earlier
that there were some problems with using small-step SOS with closures too, namely in
connection with using guarded coinduction to prove divergence of ω in Proposition 2.3
in Section 2.2.4.
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Expr 3 e ::= throw(e) | catch(e,x,e)

Figure 2.52: Abstract syntax for exception handling

E ::= [ ] | throw(E) | catch(E,x,e)
C ::= [ ] | throw(C)

C 6= [ ]

C[throw(v)]−→ throw(v)
(RS-Throw)

catch(throw(v),x,e)]−→ e[x← v] (RS-Catch-Throw)

catch(v,x,e)−→ v (RS-Catch)

e−→ e′

E[e] 7−→ E[e′]
(RS-DCR)

Figure 2.53: Evaluation contexts and reduction rules for exception handling

2.8.3 Reduction semantics for exception handling

A merit of reduction semantics is its ability to express abrupt termination concisely.

Abstract syntax. Unlike the previous semantics for exception handling surveyed in
this chapter, there is no need for explicit exception terms. The abstract syntax is given
by the grammar in Figure 2.52.

Notion of contraction. Figure 2.53 specifies evaluation contexts and reduction rules
for exception handling. Here, we distinguish two kinds of contexts: ordinary eval-
uation contexts, ranged over by E may contain arbitrary constructs, including catch

constructs; and evaluation contexts that do not contain any catch constructs, ranged
over by C. The motivation for the distinction is to ensure that exceptions are always
propagated to the closest enclosing handler. Unlike in SOS, the semantics of propagat-
ing exceptions in reduction semantics is given by a so-called context-sensitive reduction
rule: the rule (RS-Throw) contracts the term throw(v) in context C to dispose of its
context – i.e., to propagate the exception to the closest enclosing handler (or the top-
level); in contrast, context-insensitive rules like (RS-Catch-Throw) or (RS-Catch) simply
contract terms in any context.
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2.8.4 Extending with other features

Reduction semantics can also deal with features such as imperative state or control
constructs [Fel87, WF94, FWFD88] in a concise manner.

Extending semantics with new features may require updating the notion of substi-
tution, as well as introducing or modifying the notions of evaluation context specifica-
tions for existing constructs. Dealing with name-binding in a generic and modular way
has received some attention in the literature; see, e.g., [SNO+10, NTVW15]. It seems
plausible that it is possible to give a generic way of extending evaluation contexts such
that adding new constructs automatically extends all relevant evaluation contexts; e.g.,
if we were to extend Figure 2.53 with simple arithmetic expressions we should extend
both the evaluation context grammars for C and E. Tools such as PLT Redex [KCD+12]
and Ott [SNO+10] allow modular evaluation context grammars, but this modularity is
not reflected in the foundations. This thesis focuses on SOS-style specifications, but the
problems with dealing with substitution and name-binding, as well as modular eval-
uation context extensions are problems that would be interesting to explore in future
work.

2.9 Type soundness using operational semantics

Type systems are typically given by an inductively defined big-step relation that speci-
fies a typing relation.5 The purpose of such relations is to check statically (before the
program is evaluated) what the type of a program is, where a type can be thought of
as a class of values that a program program produces if it terminates. Following Milner
[Mil78], we say that a type system is sound if it guarantees that a program cannot go
wrong.

There are several ways of utilising type systems that give rise to different problems:

• Type inference problem: given a program p, what is its type (if any)?

• Type checking problem: given an annotated program p and type T , does p have
type T?

• Type inhabitance problem: is there a program p of type T?

Here, we consider the type inference problem.

2.9.1 A type system for λcbv

Figure 2.55 summarises the typing rules for λcbv. Here, types are defined by the gram-
mar in Figure 2.54 where T1 _ T2 is a function type. The judgment ‘Γ ` e : T ’ says that
e has type T in the type environment (or typing context) Γ, where Γ⊆ Var fin−→ Type.

5Some authors have explored giving typing relations as small-step semantics; e.g., [Ser12, KMF07].
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Type 3 T ::= nat | T _ T

Figure 2.54: Types for λcbv

Γ ` e1 : nat Γ ` e2 : nat
Γ ` plus(e1,e2) : nat

(T-Plus)

Γ ` n : nat
(T-Nat)

Γ[x 7→ T1] ` e : T2

Γ ` λx.e : T1 _ T2
(T-Fun)

Γ ` e1 : T1 _ T2 Γ ` e2 : T1

Γ ` e1 e2 : T2
(T-App)

x ∈ dom(Γ)

Γ ` x : Γ(x)
(T-Var)

Figure 2.55: Typing rules for source expressions in λcbv

An expression e has type T in a type environment Γ exactly when we can construct
a derivation tree whose conclusion is Γ ` e : T . For example, we can infer that λx.1+ x
has type nat_ nat in the empty type environment ‘ /0’:

{x 7→ nat} ` 1 : nat {x 7→ nat} ` x : nat
{x 7→ nat} ` 1+ x : nat
/0 ` λx.1+ x : nat_ nat

2.9.2 Small-step type soundness of λcbv using SOS

We recall differences between small-step and big-step type soundness proofs, largely
following Felleisen and Wright [WF94]. In their exposition they use reduction seman-
tics as the basis for small-step type soundness, whereas we use SOS.

Let ‘→’ be the small-step transition relation for λcbv given in Section 2.2.4. We can
prove that the type system in Figure 2.55 is type sound by means of two lemmas,
progress and preservation (also called subject reduction [CF58]), following Felleisen
and Wright’s Syntactic Approach to Type Soundness. To this end we define a relation
compatible ⊆ (Var fin−→ Val)× (Var fin−→ Type) for checking that a given concrete environ-
ment is compatible with a given type environment:

∀x ∈ dom(Γ). x ∈ dom(ρ) ∧ /0 ` ρ(x) : Γ(x)
compatible(ρ,Γ)

(TE-Compatible)
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As the astute reader may have noticed, the compatible relation has a bug: it relies on
the typing relation for checking that each {x 7→ v} ∈ ρ is typed by a corresponding
{x 7→ T} ∈ Γ; but the typing relation does not specify the type of closures! In order
to make it well-defined, and in order to prove progress (below), the typing relation in
Figure 2.55 must be augmented by the rule:

compatible(ρ,Γ′) Γ′[x 7→ T1] ` e : T2

Γ ` 〈x,e,ρ〉 : T1 _ T2
(T-Clo)

Thus there is a mutual dependency between the compatible relation and the typing
relation. One must be wary of such mutual relationships, as they might make the rela-
tion non-well-founded, and allow us to encode and prove paradoxical and inconsistent
facts, such as Russel’s paradox. This particular relationship is, however, easily seen
to be well-founded: not only is it strictly-positive, and hence well-known to be well-
founded [CPM90]; we could also have inlined compatible in the typing relation instead,
which would eliminate the mutual dependency.6 In order to prove progress by induc-
tion on the typing relation, it is convenient to break the typing rule for application into
two typing rules:

Γ ` e1 : T1 _ T2 Γ ` e2 : T1 ¬(e1,e2 ∈ Val)
Γ ` e1 e2 : T2

(T-App1)

compatible(ρ,Γ′) Γ′[x 7→ T1] ` e : T2 Γ ` v : T1

Γ ` 〈x,e,ρ〉 v : T2
(T-App2)

These rules are easily seen to be equivalent to the rule (T-App). Replacing (T-App)
by these two rules makes it straightforward to prove preservation by induction on the
typing relation. We discuss the challenge with using the (T-App) rule alone in the
progress proof of case (T-App1).

Lemma 2.16 (Progress)

e 6∈ Val =⇒ Γ ` e : T =⇒ compatible(ρ,Γ) =⇒ ∃e′. ρ ` e→ e′

Proof. The proof is by rule induction on the typing relation.

Case (T-Plus) From the induction hypothesis we have:

∀ρ. e1 6∈ Val =⇒ compatible(ρ,Γ) =⇒ ∃e′1. ρ ` e1→ e′1 (IH1)

∀ρ. e2 6∈ Val =⇒ compatible(ρ,Γ) =⇒ ∃e′2. ρ ` e2→ e′2 (IH2)

From the goal we have:

compatible(ρ,Γ) (H1)

Γ ` e1 : nat (H2)

Γ ` e2 : nat (H3)

6It is for didactic reasons that we gave compatible as separate relation.
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The goal is:
∃e′. ρ ` plus(e1,e2)→ e′ (Goal)

We reason by case analysis on whether e1 ∈ Val or not.

Subcase (e1 6∈ Val) By eliminating the existential in (IH1), the goal follows straightfor-
wardly from the (SOS-Plus1) rule.

Subcase (e1 ∈ Val) It must be the case that e1 is some natural number n1, or (H2)
would be a contradiction. We reason by case analysis on whether e2 ∈ Val or not.

Subcase (e2 6∈ Val) The goal follows straightforwardly from (IH2).

Subcase (e2 ∈ Val) It must be the case that e2 is some natural number n2, or (H3)
would be a contradiction. The goal follows from the (SOS-λcbv-Plus) rule.

Case (T-Nat) The case leads to a contradiction, since n ∈ Val.

Case (T-Fun) The goal follows trivially from the (SOS-λcbv-Lam) rule.

Case (T-App1) From the induction hypothesis we have:

∀ρ. e1 6∈ Val =⇒ compatible(ρ,Γ) =⇒ ∃e′1. ρ ` e1→ e′1 (IH1)

∀ρ. e2 6∈ Val =⇒ compatible(ρ,Γ) =⇒ ∃e′2. ρ ` e2→ e′2 (IH2)

From the goal we have:

compatible(ρ,Γ) (H1)

Γ ` e1 : T1 _ T2 (H2)

Γ ` e2 : T1 (H3)

¬(e1,e2 ∈ Val) (H4)

The goal is:
∃e′. ρ ` e1 e2→ e′ (Goal)

We reason by case analysis on whether e1 ∈ Val or not.

Subcase (e1 6∈ Val) By eliminating the existential in (IH1), the goal follows straightfor-
wardly from the (SOS-Plus1) rule.

Subcase (e1 ∈ Val) It must be the case that e1 is some closure 〈x,e,ρ〉, or (H2) would
be a contradiction. We reason by case analysis on whether e2 ∈ Val or not.

Subcase (e2 6∈ Val) The goal follows straightforwardly from (IH2).

Subcase (e2 ∈ Val) Contradiction, by (H4).
But consider if this had not been a contradiction: then e2 = v2, and we would have

to prove that there was some e′ such that ρ ′[x 7→ v2] ` e→ e′ holds. But the induction
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hypotheses do not allow us to infer that this is the case. This is the motivation for
breaking the application rule into two equivalent rules.

Case (T-App2) From the induction hypothesis we have:

∀ρ. e 6∈ Val =⇒ compatible(ρ,Γ′[x 7→ T1]) =⇒ ∃e′1. ρ ` e1→ e′1 (IH1)

From the goal we have:

compatible(ρ,Γ′) (H1)

Γ
′[x 7→ T1] ` e : T2 (H2)

Γ ` v : T1 (H3)

The goal is:
∃e′. ρ ` 〈x,e,ρ〉 v→ e′ (Goal)

We reason by case analysis on whether e ∈ Val or not.

Subcase (e 6∈ Val) By Lemma 2.17 (see below), (H1), and (H3), we get:

compatible(ρ[x 7→ v],Γ′[x 7→ T1]) (H4)

The goal now follows from (H4), (IH1), and rule (SOS-λcbv-AppC).

Subcase (e ∈ Val) The goal follows from rule (SOS-λcbv-App).

Case (T-Var) From the goal we have:

compatible(ρ,Γ) (H1)

x ∈ dom(Γ) (H2)

The goal is:
∃e′. ρ ` x→ e′ (Goal)

From (H1) and (TE-Compatible), we get that x ∈ dom(ρ), since x ∈ dom(Γ). Thus
∃v. ρ(x) = v. The goal follows from this fact and rule (SOS-λcbv-Var).

Lemma 2.17 (Compatibility is preserved by well-typed updates)

compatible(ρ,Γ) =⇒ ∀Γ′. Γ
′ ` v : T =⇒ ∀x. compatible(ρ[x 7→ v],Γ[x 7→ T ])

Proof. Immediate from the definition of (TE-Compatible) and from Lemma 2.18 (see
below).
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Lemma 2.18 (Environment is irrelevant for typing values)

Γ ` v : T =⇒ ∀Γ′. Γ
′ ` v : T

Proof. The proof is by rule induction on the first premise. There are two cases to
consider: numbers n and closures 〈x,e,ρ〉. Both cases are trivial.

For the preservation proof, we use the typing relation given by the (T-App) rule,
without splitting it into two.

Lemma 2.19 (Preservation)

ρ ` e→ e′ =⇒ Γ ` e : T =⇒ compatible(ρ,Γ) =⇒ Γ ` e′ : T

Proof. The proof is by rule induction on the first premise.

Case (SOS-λcbv-Plus1) The induction hypothesis gives:

∀Γ T. Γ ` e1 : T =⇒ compatible(ρ,Γ) =⇒ Γ ` e′1 : T (IH)

From the goal we have:

compatible(ρ,Γ) (H1)

Γ ` plus(e1,e2) : T (H2)

The goal is:
Γ ` plus(e′1,e2) : nat (Goal)

By inversion on (H2), we get:

Γ ` e1 : nat (H3)

Γ ` e2 : nat (H4)

The goal follows by applying (T-App), (IH), (H1), (H3), and (H4).

Case (SOS-λcbv-Plus2) The structure of the proof for this case is similar to that for
(SOS-λcbv-Plus1).

Case (SOS-λcbv-Plus) The goal follows trivially:

Γ ` n : nat (Goal)

Case (SOS-λcbv-Lam) From the goal we have:

compatible(ρ,Γ) (H1)

Γ ` λx.e : T (H2)
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The goal is:
Γ ` 〈x,e,ρ〉 : T (Goal)

By inversion on (H2), we get:

Γ[x 7→ T1] ` e : T2 (H3)

The goal follows from rule (T-Clo), (H1), and (H3).

Case (SOS-λcbv-App1) The structure of the proof for this case is similar to that for
(SOS-λcbv-Plus1).

Case (SOS-λcbv-App2) The structure of the proof for this case is similar to that for
(SOS-λcbv-Plus1).

Case (SOS-λcbv-AppC) The structure of the proof for this case is similar to that for
(SOS-λcbv-Plus1).

Case (SOS-λcbv-App) From the goal we have:

Γ ` 〈x,v,ρ〉 v2 : T (H1)

The goal is:
Γ ` v : T (Goal)

By inversion on (H1), we get:

Γ ` 〈x,v,ρ〉 : T1 _ T2 (H2)

Γ ` v2 : T1 (H3)

The goal becomes:

Γ ` v : T2 (Goal′)

By inversion on (H2), we get:

Γ
′[x 7→ T1] ` v : T2 (H4)

From Lemma 2.18, we get:

Γ ` v : T2 (H)

from which the goal follows.

Case (SOS-λcbv-Var) From the goal we have:

compatible(ρ,Γ) (H1)

Γ ` x : T (H2)
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The goal is:
Γ ` ρ(x) : T (Goal)

By inversion on (H2), we get:

x ∈ dom(Γ) (H2)

The goal becomes:
Γ ` ρ(x) : Γ(x) (Goal)

The goal follows from inversion on (H1) and Lemma 2.18.

Proposition 2.20 (Type soundness)

Γ ` e : T =⇒ compatible(ρ,Γ) =⇒ e ∈ Val ∨ (∃e′. ρ ` e→ e′ ∧ Γ ` e′ : T )

Proof. If e is a value, the conclusion follows. Otherwise, progress gives us that there
exists a further transition, and preservation gives us that the term resulting from the
transition must be well-typed, from which the goal follows.

For some semantics it is necessary to give typing rules for terms that are not valid
source program terms in order to type intermediate expressions, i.e., expressions that
never occur as source programs, and only play an administrative role for the opera-
tional semantics. This complicates the typing relation, and occasionally requires extra
predicates and conditions in order to distinguish source-terms from intermediate terms
[WF94, Section 6.4]. Big-step semantics do not suffer from this drawback, but have
drawbacks of their own.

2.9.3 Big-step type soundness

Small-step semantics commonly uses intermediate syntax for recording values or aux-
iliary entities that may occur as part of abstract syntax trees during evaluation. In
contrast, natural semantics usually have a clear distinction between the syntactic sorts
for source programs vs. value terms. Thus, whereas the typing relation for small-step
semantics must assign types to intermediate expressions, big-step semantics is free of
these concerns, which in this case leads to a simpler typing relation: for example, the
typing relation does not need to cover closures, since closures are values that never
occur in source programs.

The typing rules for the natural semantics for λcbv given in Figure 2.27 coincide
with those given in Figure 2.55, except for the rule (T-Nat) for natural numbers, which
is replaced by the following rule that types numeral terms (num(n)) instead:

Γ ` num(n) : nat
(T-Num)
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V n : nat
(TV-Nat)

compatible(ρ,Γ) Γ[x 7→ T1] ` e : T2
V 〈x,e,ρ〉 : T1 _ T2

(TV-Clo)

Figure 2.56: Value typing rules for λcbv

In order to express type soundness using a big-step relation one typically defines a
value typing relation which assigns types to all values that programs may produce. We
follow Milner and Tofte [MT91] and define a relation V ⊆ Val×Type given by the rules

in Figure 2.56, where the judgment V v : T asserts that the value v has type T , and
compatible is defined as before.

The traditional approach to proving big-step type soundness [Mil78, Tof90, MT91]
is to prove a statement like the following:

Γ ` e : T =⇒ compatible(ρ,Γ) =⇒ ρ ` e⇒ o =⇒ V o : T (Big-Type-Preserve)

Intuitively, the property says that, if evaluation converges, it produces an outcome with
the same type as we inferred for the expression. But what happens if evaluation of e
goes wrong? Unless the evaluation relation ⇒ explicitly handles this by returning an
outcome representing going wrong, we might prove the statement true for defective
typing relations that permit computations that do go wrong.

The traditional approach to proving big-step type soundness thus involves intro-
ducing special “wrong” values everywhere evaluation can get stuck. Figure 2.57 sum-
marises rules for “going wrong” that must be added to the natural semantics from
Section 2.4.4. Unless one can automatically generate such wrong rules (which seems
an approach that is rarely, if ever, utilised in practice), one has to add these rules man-
ually. This makes the approach brittle: adding such rules is error-prone, and leaving
out a source of “going” wrong may make the type soundness proof vacuous.

Leroy and Grall [LG09, Lemma 50] avoids giving “wrong” rules using a so-called
“big-step progress” theorem, which states that programs that type-check but fail to
co-evaluate must diverge – which, in turn, implies that they cannot go “wrong”. Their
proof relies on guarded coinduction and extensive use of the law of excluded middle for
case analysis. Since the approach is based on traditional big-step divergence rules, their
specification suffers from the duplication problem. Another shortcoming is that both
proofs require some degree of semantic insight, in the sense of having to do inversion
on typing relations and apply auxiliary lemmas in a fashion that requires some degree
of semantic insight about the semantics and type system.

Charguéraud [Cha13, Section 3.3] proposes an alternative way of giving wrong
transitions based on a special progress predicate, such that forgetting to add a rule for
the progress predicate makes type soundness impossible to prove. This makes proving
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Notion of outcome.
OutcomeWNS ::= v | WRONG

Semantics of going wrong.

ρ ` e1⇒ o1 o1 6∈ N

ρ ` plus(e1,e2)⇒ WRONG
(NS-λcbv-Wrong-Plus1)

ρ ` e1⇒ n1 ρ ` e2⇒ o2 o2 6∈ N

ρ ` plus(e1,e2)⇒ WRONG
(NS-λcbv-Wrong-Plus2)

ρ ` e1⇒ o1 o1 6∈ {〈x,e,ρ〉}
ρ ` e1 e2⇒ WRONG

(NS-λcbv-Wrong-App1)

ρ ` e1⇒ 〈x,e,ρ ′〉 ρ ` e2⇒ WRONG

ρ ` e1 e2⇒ WRONG
(NS-λcbv-Wrong-App2)

ρ ` e1⇒ 〈x,e,ρ ′〉 ρ ` e2⇒ v2 ρ ′[x 7→ v2] ` e⇒ WRONG

ρ ` e1 e2⇒ WRONG
(NS-λcbv-App′)

x 6∈ dom(ρ)

ρ ` x⇒ WRONG
(NS-λcbv-Wrong-Var)

Figure 2.57: “Wrong” rules for λcbv

type soundness less error-prone, but still involves some manual effort in giving the
necessary progress judgments, unless one could generate progress judgments somehow,
which Charguéraud suggests might be possible.

In the next section we recall Cousot’s approach to types as abstract interpretations
which provides an alternative way of proving type soundness using a big-step relation.
While the next section recalls Cousot’s exposition that is based on semantics with ex-
plicit WRONG transitions, the approach supports proving type soundness without these,
too, as we show in Chapter 6.

2.9.4 Types as abstract interpretations

Following Cousot [Cou97], we can interpret types as abstract interpretations [CC79].
The idea is to formalise the relationship between sets of concrete denotations (i.e., the
set of all possible meanings of a program in any context) and sets of typings (i.e., the
set of all possible types of a program in any context) as a Galois connection. The Galois
connection allows us to obtain, from any set of typings the set of all possible concrete
denotations that correspond to it; and vice versa, from any set of concrete denotations
we can obtain the set of all possible corresponding typings. Thus, the Galois connection
formalises the most precise typing relation. For most interesting languages, using the
Galois connections type inference would be undecidable. But, following Cousot, the
Galois connection provides a useful guiding principle for discovering relations that are
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decidable by proving that these are safe approximations of the most precise relation.
We recall how Cousot uses abstract interpretation to give meaning to types, and

how this meaning can be used to prove type safety. Cousot’s exposition uses a denota-
tional semantics, but here we make the straightforward adaptation of the approach to
natural semantics.

Denotations. The denotation of an expression is given by its set of possible meanings.
Using the natural semantics for λcbv with the WRONG rules in Figure 2.57, we can
define a function that returns this set for arbitrary expressions (where Λ is a meta-level
function abstraction, and Env, Var fin−→ Val):

DJ•K ∈ Expr→ Env→℘(Outcome⊥)

DJeK= Λρ.{o | ρ ` e⇒ o}∪{⊥ | ρ ` e ∞
=⇒}

Here, Outcome⊥ denotes the disjoint union Outcome+{⊥}. Following standard notation
from the literature on denotational semantics [SS71, Sch86], ⊥ is a special value that
indicates undefinedness and divergence.

Typings. A typing is a pair consisting of a type environment in TypeEnv, Var fin−→ Type
and a type. But what is the meaning of a typing? According to Cousot [Cou97],
the meaning of typings is given by a Galois connection between sets of typings and
sets of denotations. Recall that a Galois connection is given by a pair of functions
α,γ, where we say that α is an abstraction function, and γ is a concretisation function.
Following Cousot, we define a concretisation function, which relates sets of typings
in T ,℘(TypeEnv×Type) and sets of concrete denotations in ℘(D) where D , Env→
℘(Outcome⊥).

Figure 2.58 defines a concretisation function that assigns meaning to typings for
λcbv by relating them to concrete denotations. For example, using it, the meaning of
the type nat _ nat is the set of all closures 〈x,e,ρ〉 which, when applied to a value of
type nat, entails an outcome of type nat, meaning it either diverges or returns some
natural number n. The meaning of a set of typings P is given conjunctively, i.e., all
programs in γP(P) must be typable by each typing p ∈ P.

Galois connection. A Galois connection is given by a pair of functions α,γ that satisfy
for two partially ordered sets 〈A,vA〉 and 〈B,vB〉:

α ∈ A→ B γ ∈ B→ A

α(a)vB b ⇐⇒ avA
γ(b)

For our D and T, we want a pair of functions that satisfy:

α ∈℘(D)→ T γ ∈ T→℘(D)

α(D)⊇T P ⇐⇒ D⊆D
γ(P)
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γV ∈ Type→℘(Outcome⊥)

γV (nat), N∪{⊥}

γV (T1 _ T2),

{
〈x,e,ρ〉

∣∣∣∣ ∀v1 ∈ γV (T1).
∀o2. o2 ∈ DJeK(ρ[x 7→ v1]) ∧ o2 ∈ γV (T2)

}
∪{⊥}

γR ∈ TypeEnv→ Env

γR(Γ), {ρ | ∀x ∈ dom(Γ). x ∈ dom(ρ) ∧ ρ(x) ∈ γV (Γ(x))}
γP ∈ (TypeEnv×Type)→℘(D)

γP((Γ,T )), {d | ∀ρ. ρ ∈ γR(Γ) =⇒ ∀o. o ∈ d(ρ) =⇒ o ∈ γV (T )}
γ ∈ T→℘(D)

γ(P),
⋂
p∈P

γP(p) γ( /0), D

Figure 2.58: Concretisation function for λcbv

Here, the inclusion order is reversed, because types are interpreted conjunctively: the
set of typings one can assign to a set of denotations D are valid typings for all denota-
tions d ∈ D. Specifically, due to the way our concretisation function is constructed, it
holds that:

γ(
⋃
i∈∆

Pi)

=
⋂

p∈⋃i∈∆ Pi

γP(p) (by def. of γ)

=
⋂

i∈∆,p∈Pi

γP(p) (by def. of
⋃

)

=
⋂
i∈∆

γ(Pi) (by def. of
⋂

and γ)

From this fact, we can use well-known results about Galois connections between com-
plete lattices [NNH99, Chapter 4.3] to deduce that γ uniquely defines an abstraction
function α such that there is a Galois connection between D and T, i.e., that:

α(D)⊇ T ⇐⇒ D⊆ γ(T )

Following standard notation, we write:

(T,⊇)−−→←−−
γ

α

(℘(D),⊆)
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Type soundness. An important property of the concretisation function is that it does
not assign any meaning to the WRONG value. Thus, whenever it holds for some set of
typings P:

DJeK ∈ γ(P)

it holds that e does not go wrong. Given this fact, we can use the Galois-connection as
a guiding principle for finding a typing procedure TJeK that allows us to approximate
the set of actual typings for given program expressions. It must hold that:

α({DJeK})⊇T TJeK ⇐⇒ (by Galois connection)

{DJeK} ⊆D
γ(TJeK) ⇐⇒ (by subset inclusion)

DJeK ∈D
γ(TJeK)

Here, the first line reads “T safely approximates the set of typings for the expression e”.
If we let TJ•K ∈ Expr→ T be the following typing denotation function defined in terms
of the typing relation in Figure 2.55:

TJeK, {(Γ,T ) | Γ ` e : T}

then, by unfolding definitions:

DJeK ∈ γ(TJeK)

⇐⇒ (Γ,T ) ∈ TJeK =⇒ ∀ρ. ρ ∈ γR(Γ) =⇒
∀o. o ∈ DJeK(ρ) =⇒ o ∈ γV (T )

(by def. of γP and ∈)

⇐⇒
Γ ` e : T =⇒ ∀ρ. ρ ∈ γR(Γ) =⇒

∀o. (ρ ` e⇒ o) ∨ (o =⊥ ∧ ρ ` e ∞
=⇒) =⇒ o ∈ γV (T )

(by def. of T and D)

The result is a type soundness statement reminiscent of the type soundness statement
(Big-Type-Preserve) from 2.9.3, but with some differences:

• the concretisation functions are more precise (as in, they give types to more
terms) than the value-typing relation V and compatible relation; for example,

the DJωK ∈ γ(T), whereas ω is untypable using V ; and

• the type soundness statement based on abstract interpretation explicitly mentions
the divergence relation – this difference is, however, mainly superficial, due to the
way divergent computations are typed.

Types as abstract interpretations provides an answer to the question “what is the
meaning of types” [Rey03] that is a useful basis for proving type soundness. In Chap-
ter 6 we show that the extra precision afforded by the Galois connection in fact enables
us to prove type soundness without adding “wrong” transitions to a big-step semantics.
Before delving into that, we focus on the pragmatic problem with giving and relating
small-step and big-step extensible specifications that none of the frameworks recalled
in this chapter provide a satisfactory solution to.
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2.10 Summary

We have recalled previous approaches to semantics specification from the literature.
These provide varying degrees of support for language evolution and concise specifi-
cation. We have postponed an overview of how to relate small-step and big-step SOS,
but remark that there are standard approaches to this in the literature. Such proofs
are often established manually, and are complicated by the poor support that many
frameworks for SOS exhibit.

In Chapter 3 of this thesis we introduce a variant of SOS that provides better support
for language evolution for both small-step and big-step semantics. This allows us to
prove, once-and-for-all, in Chapters 4 and 5 the relationship between a class of small-
step and big-step SOS rules that suffices to give semantics for diverse language features,
including abrupt termination, divergence, and continuation-based control constructs.

We have also recalled previous approaches to proving type soundness. In particular,
big-step approaches are challenging to work with, since they require explicit notions
of going wrong, which is tedious and error-prone. In Chapters 6, 7, and 8 we study
how types as abstract interpretations provides a proof method for proving big-step type
soundness without having to add explicit “wrong” rules.
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MSOS supports a technique for abrupt termination as signals in transition system la-
bels, but the technique does not directly translate to big-step semantics. We analyse
the problem and propose a simple but novel variant of Mosses’ generalised transition
systems that we call extensible transition systems (XTS) as a solution. We also introduce
a variant of MSOS that we call Extensible SOS (XSOS).

3.1 The problem with modular abrupt termination

Section 2.3.4 presented the technique for abrupt termination that is used in MSOS. In
Section 2.6.2 we saw that the technique does not directly translate to big-step MSOS.
Some of the drawbacks that prevent the technique from translating are also apparent
in small-step MSOS with the abrupt termination technique.

Using the encoding of abrupt termination recalled in Figure 2.20, a generalised
transition system abruptly terminates when an exception signal occurs in the context
of a program expression. In other words, if an expression throws an exception that
does not have an enclosing program term, evaluation does not terminate abruptly. For
example, the expression plus′(throw(0),ω) does not terminate if plus′ has interleaving
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order of evaluation. The expression diverges instead:

plus′(throw(0),ω)
{exc′=EXC(0),env= /0,—}−−−−−−−−−−−−−−→ plus′(stuck,ω)
{exc′=EXC(0),env= /0,—}−−−−−−−−−−−−−−→∗ plus′(stuck,〈x,x x, /0〉 〈x,x x, /0〉)
{exc′=EXC(0),env= /0,—}−−−−−−−−−−−−−−→∗ plus′(stuck,〈x,〈x,x x, /0〉 〈x,x x, /0〉, /0〉 〈x,x x, /0〉)
{exc′=EXC(0),env= /0,—}−−−−−−−−−−−−−−→ ·· ·

The root of the issue is that exceptions are not terminal configurations.

3.2 Towards a solution: abruptly terminated configurations

Figure 3.1 illustrates how encoding abrupt termination as configurations goes towards
solving the problem. The figure defines a generalised transition system 〈Γ,C,→,T 〉
where Γ , Expr×ExcStat, C , 1 (i.e., a singleton category with a single object and a
single arrow),→ is the transition relation in Figure 3.1, and T , {(v,OK)}∪{(e,EXC)}.
Here, the syntactic set ExcStat is an exception status flag, used to indicate whether
abrupt termination has occurred or not. Programs only have further transitions insofar
as they are not in an abruptly terminated state.

Using this approach, exceptions are propagated without introducing new rules for
existing constructs, like in MSOS. Unlike MSOS, exceptions are now terminal configu-
rations on their own. For example, plus(throw(0),plus(1,2)) now abruptly terminates
without any top-level handler:

(plus(throw(0),plus(1,2)),OK)
{—}−−→ (plus(stuck,plus(1,2)),EXC(0))

This approach does not require us to introduce new rules for existing constructs, and
does not rely on top-level program expressions in order to abruptly terminate. How-
ever, it relies on an auxiliary entity as part of the configuration. This differs from gener-
alised transition systems, in that generalised transition systems require configurations
to be pure abstract syntax trees or computed values [Mos04, p. 206]. Extensible transi-
tion systems relax the requirement that configurations in generalised transition systems
must be pure abstract syntax trees or computed values.

3.3 Extensible transition systems

We propose a simple, but novel, variant of generalised transition systems that we call
extensible transition systems.

Definition 3.1 (Extensible transition system) An extensible transition system (XTS) is
a quadruple 〈Γ,C,→,F〉 where C is a category with objects O and morphisms M such
that 〈Γ×O,M,→,F〉 is a labelled transition system.
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Abstract syntax.

Expr 3 e ::= plus(e,e) | throw(e) | stuck | v Expressions

Val 3 v ::= n Values

ExcStat 3 ε ::= OK | EXC(v) Exception status

Transition relation.

(e,OK)
{...}−−→ (e′,ε)

(throw(e),OK)
{...}−−→ (throw(e′),ε)

(MSOS-X-Throw1)

(throw(v),OK)
{—}−−→ (stuck,EXC(v))

(MSOS-X-Throw)

(e1,OK)
{...}−−→ (e′1,ε)

(plus(e1,e2),OK)
{...}−−→ (plus(e′1,e2),ε)

(MSOS-X-Plus1)

(e2,OK)
{...}−−→ (e′2,ε)

(plus(n1,e2),OK)
{...}−−→ (plus(n1,e′2),ε)

(MSOS-X-Plus2)

(plus(n1,n2),OK)
{—}−−→ (n1 +n2,OK)

(MSOS-X-Plus)

Figure 3.1: An MSOS semantics for abrupt termination using configurations

A computation in an XTS is a computation in the underlying LTS such that its trace is
a path in the category C: a transition labelled m is followed immediately by a transition
labelled m′, the labels m,m′ are required to be composable in C.

This definition of XTS relies on labelled transition systems (LTS), rather than labelled
terminal transition systems (LTTS). The difference between LTS and LTTS is in the
distinction between terminal and final configurations. In the literature on automata
theory (e.g., [HMU03]), it is common to regard final (or accepting) states as states that
may have further transitions; i.e., they are computations that are allowed to terminate,
but not required to. In contrast, according to Definition 2.2, terminal configurations
have no possible further transitions.

Definition 3.2 (Labelled transition system) A labelled transition system (LTS) is a
quadruple 〈Γ,L,→,F〉 consisting of a set Γ of configurations γ, a set L of labels l, a

ternary relation → ⊆ Γ×L×Γ of labelled transitions (〈γ, l,γ〉 ∈ → is written γ
l−→ γ),

and a set F ⊆ Γ of final configurations.
A computation in an LTS (from γ0) is a finite or infinite sequence of successive
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transitions γi
li−→ γi+1 written γ0

l1−→ γ1
l2−→ . . ., such that if the sequence is finite and has as

final configuration γn we have γn ∈ F .

It is straightforward to translate an LTS into an LTTS, and thus it is also straightfor-
ward to give a derived notion of extensible terminal transition system, as we show in
Section 3.6.

Apart from the difference between LTS and LTTS, the main difference between XTS
and GTTS is that, in the labelled transition system underlying an XTS specification,
configurations comprise of abstract syntax and objects of C. This permits us to gener-
alise the approach suggested in Section 3.2 such that we avoid the drawbacks of MSOS
recalled in Section 3.1.

Being a variation on GTTS, transition relations can be defined using MSOS. But,
since auxiliary entities make up an essential part of the structure of configurations, we
adopt a notation that reflects the structure of configurations in rules explicitly, rather
than encoding it into the names of morphisms.

3.4 Extensible SOS

We propose a variant of MSOS that we call Extensible SOS (XSOS). The main differ-
ences between MSOS and XSOS is that configurations in XSOS range over both abstract
syntax and auxiliary entities.

3.4.1 Configurations

In XSOS, judgments have the form:

R ` γ/S
L−→ γ

′
/S′

Here, each R,S,L are interpreted relative to the indexed product category C , ∏i∈I Ci

in the underlying XTS such that:

• R ranges over the indexed product of all objects in the current configuration that
are modelled by a discrete category in C (i.e., read-only entities);

• L ranges over the indexed product of all morphisms that are modelled by a free
monoid in C (i.e., write-only entities); and

• S ranges over the indexed product of all other objects in the current configuration
that are modelled by a preorder category in C (i.e., read-write entities).

We write X [y z] to denote the injection of z at the y index of an indexed product X . We
also use the notation X .y to denote the projection of index y from an indexed product
X .

While it is natural to model write-only entities by means of the free monoid, it is
somewhat burdensome to propagate three different kinds of auxiliary entities. For the
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purpose of this thesis, it suffices to model free monoids as preorders without any loss
of generality: recall that a free monoid is the set of all finite sequences A∗ of zero or
more elements for a monoid 〈A, ·〉, where ‘·’ is an associative binary operation A×A→ A
for which there exists an identity element ι such that ι ·a = a · ι = a for any a ∈ A. Any
free monoid A∗ forms a preorder, using prefix-ordering as the notion of preorder. Thus,
morphisms ranged over by L can be omitted in rules, and we restrict our attention to
judgments of the form:

R ` γ/S −→ γ
′
/S′

For example, consider the following rules for the print construct from Section 2.3.6
which rely on output by means of the label L:

R ` e/S
L−→ e′/S′

R ` print(e)/S
L−→ print(e′)/S′

R ` print(v)/S
out′ [v]−−−−→ unit/S

For this thesis, we model such output using a preordered auxiliary entity instead:

R ` e/S −→ e′/S′

R ` print(e)/S −→ print(e′)/S′

R ` print(v)/S[out vs] −→ unit/S[out (v::vs)]

Here, :: is the cons of lists.
In XSOS the small-step rules for plus become:

R ` e1/S −→ e′1/S′

R ` plus(e1,e2)/S −→ plus(e′1,e2)/S′

R ` e2/S −→ e′2/S′

R ` plus(n1,e2)/S −→ plus(n′1,e2)/S′

R ` plus(n1,n2)/S→ n1 +n2/S

XSOS also removes the need for big-step rules to explicitly mention label composition.1

For example, recall the big-step MSOS rule for plus from Figure 2.16:

e1
`1−→ n1 e2

`2−→ n2

plus(e1,e2)
`1 # `2−−−→ n1 +n2

1This has both its merits and drawbacks: a merit is that XSOS rules are closer to familiar SOS rules. A
drawback is that it loses some of the generality afforded by label composition: for example, the semantics
of label composition could be more sophisticated than propagating entities in a left-to-right manner.
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3. Extensible Transition System Semantics

Its big-step XSOS counterpart is:

R ` e1/S =⇒ n1/S′ R ` e2/S′ =⇒ n2/S′′

R ` plus(e1,e2)/S =⇒ n1 +n2/S′′

Here, auxiliary entities are propagated syntactically, similar to Plotkin’s SOS rules
[Plo81].

3.4.2 Comparison of approaches

Table 3.1 compares SOS, MSOS, and XSOS. Each rule propagates (at least) three dif-
ferent auxiliary entities: environments (ρ), stores (σ), and printed values (lists of v’s).
The first row illustrates the semantic rules for a construct that uses environments (i.e.,
a ‘read-only’ entity in MSOS terminology); the second row, rules specifying a construct
that uses imperative stores (‘read-write’); and in the last row, semantic rules for a con-
struct that produces observable output (‘write-only’).

Whereas SOS rules propagate only explicitly-mentioned auxiliary entities, MSOS
and XSOS rules propagate an open-ended set of auxiliary entities. The means of propa-
gation in MSOS and XSOS differs slightly: whereas MSOS propagates all unmentioned
entities using a single meta-variable, namely a label which ranges over all auxiliary
entities, XSOS rules are more verbose and rely on two distinct meta-variables for the
two different kinds of auxiliary entities; R for discrete entities, and S for preordered
auxiliary entities.

Comparing the first and last column of the figure illustrates an intentional coinci-
dence between how judgments and rules in SOS and XSOS are written and read. The
main differences between XSOS and SOS are: XSOS propagates an open-ended set of
auxiliary entites; and observable output is represented by explicit concatenation onto
the output stream. Thus, even though neither of the XSOS rules in the first and second
row of Table 3.1 explicitly mention the out auxiliary entity, it is implicitly propagated,
via the S,S′ variables.

3.4.3 Abbreviated XSOS

In order to make rules and specifications more readable, we adopt and adapt ideas
from Implicitly-Modular SOS [MN09] (I-MSOS). Mosses and New define formally the
correspondence between I-MSOS rules and MSOS. For the purpose of this thesis it
suffices with an informal description of how we abbreviate XSOS rules and what we
mean by the abbreviations. When reasoning about XSOS rules and specifications we
always use their unabbreviated forms.

We abbreviate XSOS rules by omitting meta-variables R and S in rules, such that a
rule like:

e1→ e′1 e2→ e′2 . . . en→ e′

e→ e′
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3. Extensible Transition System Semantics

abbreviates an XSOS rule:

R ` e1/S −→ e′1/S2
R ` e2/S2 −→ e′2/S3

. . . R ` en/Sn −→ e′/S′

R ` e/S −→ e′/S′

Similarly, rules that only refer to certain auxiliary entities, such as the following rule
for application:

env ρ ` e1⇒ 〈x,e,ρ ′〉 env ρ ` e2⇒ v2 env ρ ′[x 7→ v2] ` e⇒ v
env ρ ` e1 e2⇒ v

abbreviates a rule where ρ is injected into the indexed product of readable auxiliary
entities R at the env index, and all other entities are propagated as described above,
i.e.:

R[env ρ] ` e1/S =⇒ 〈x,e,ρ ′〉/S2

R[env ρ] ` e2/S2 =⇒ v2/S3 R[env ρ ′[x 7→ v2]] ` e/S3 =⇒ v/S′

R[env ρ] ` e1 e2/S =⇒ v/S′

We use these conventions for making rules more perspicuous, but use explicit XSOS
judgments in definitions and proofs (or otherwise explicitly state what we are leaving
out).

Table 3.2 gives a comparison of abbreviated XSOS rules and explicit XSOS rules,
and illustrates how any auxiliary entities that are not explicitly used by in the rule are
omitted. For example, for read-only entities, using abbreviated XSOS both the variables
R and S are omitted and propagated as described above.

3.4.4 MSOS vs. XSOS

Adopting the syntactic left-to-right propagation strategy inherent to the big-step XSOS
rule above has both pros and cons: one of the pros is that it brings XSOS rules closer to
traditional SOS and natural semantics rules by removing the need to explicitly mention
label composition operators in rules; a con is that this precludes more sophisticated
notions of composition that label composition in MSOS supports (although the author
is not aware of any literature that actually utilises this flexibility). We emphasise that
XTS semantics could also be given using MSOS rules, so this is a shortcoming of XSOS,
and not inherent to the underlying notion of extensible transition system. The focus
of this thesis is deterministic programming language semantics, so the extra generality
afforded by big-step MSOS over big-step XSOS is not relevant for the purpose of this
thesis.

3.5 Extensible specifications for abrupt termination

It is straightforward to model the notion of abrupt termination from Section 3.2 in XTS
in an extensible way that scales to both small-step and big-step semantics.
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3.5. Extensible specifications for abrupt termination

Explicit XSOS Abbreviated XSOS

Read-only
R[env ρ ′[x 7→ v]] ` e/S −→ e′/S′

R[env ρ] ` 〈x,e,ρ ′〉 v/S −→ 〈x,e′,ρ ′〉 v/S′

env ρ ′[x 7→ v] ` e→ e′

env ρ ` 〈x,e,ρ ′〉 v→ 〈x,e′,ρ ′〉 v

R[env ρ] ` λx.e/S→ 〈x,e,ρ〉/S env ρ ` λx.e→ 〈x,e,ρ〉

Read-write
R ` e/S −→ e′/S′

R ` ref(e)/S −→ ref(e′)/S′

e→ e′

ref(e)→ ref(e′)

r 6∈ dom(σ)

R ` ref(v)/S[sto σ ]→ r/S[sto σ [r 7→v]]

r 6∈ dom(σ)

ref(v)/sto σ → r/sto σ [r 7→v]

Write-only
R ` e/S −→ e′/S′

R ` print(e)/S −→ print(e′)/S′

e→ e′

print(e)→ print(e′)

R ` print(v)/S[out vs] −→ unit/S[out v::vs] print(v)/out vs −→ unit/out v::vs

Table 3.2: Comparison of explicit and abbreviated small-step XSOS rules

3.5.1 Small-step XSOS for abrupt termination

Figure 3.2 gives a specification of throwing and catching exceptions. The specification
consists of:

• an abstract syntax specification, i.e., a term signature Σthrow;

• an indexed product category, Cthrow, with an index exc comprising an abrupt
termination category (CAT) that we will shortly be describing, and an index env
comprising a discrete category (CDISCRETE) whose objects is the set of environ-
ments Env;

• a set of rules that define a predicate Q ⊆ Γ×O for distinguishing a set of final
configurations; and

• a set of rules Dthrow defining a relation  ⊆ Γ×O×Γ×O.

The specification names each constituent part so that we can refer to and combine
specifications. It constitutes what we call an extensible rule specification, defined in
Definition 3.3.

Definition 3.3 (Extensible rule specification) An extensible rule specification is a tuple〈
Σ,∏

j∈J
C j,D,Q

〉
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3. Extensible Transition System Semantics

Abstract syntax (Σthrow).

Expr 3 e ::= throw(e) | catch(e,x,e) | bind(x,v,e) | stuck
v ∈ Val

ExcStat 3 ε ::= OK | EXC(v)

Env, Var fin−→ Val

Auxiliary entities (Cthrow).

Cthrow ,
{

exc : CAT(Val) ; env : CDISCRETE(Env)
}

Final configurations (Qthrow).

Q(v,S)

Q(e,S[exc EXC(v)])

Transition relation (Dthrow).

e→ e′

throw(e)→ throw(e′)
(XSOS-Throw1)

throw(v)/exc OK→ stuck/exc EXC(v)
(XSOS-Throw)

e1/exc OK→ e′1/exc OK

catch(e1,x,e2)/exc OK→ catch(e′1,x,e2)/exc OK

(XSOS-Catch1)

catch(v,x,e2)→ v
(XSOS-CatchV)

e1/exc OK→ e′1/exc EXC(v)

catch(e1,x,e2)/exc OK→ bind(x,v,e2)/exc OK

(XSOS-CatchE)

env ρ[x 7→ v] ` e→ e′

env ρ ` bind(x,v,e)→ bind(x,v,e′)
(XSOS-Bind1)

bind(x,v,v′)→ v′
(XSOS-Bind)

Figure 3.2: XTS for exception handling
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3.5. Extensible specifications for abrupt termination

where:

• Σ is a signature of terms ranged over by t;

• ∏ j∈J C j is a product category with objects O, ranged over by o, and morphisms
M, ranged over by m where the structure of objects and morphisms may depend
on Σ;

• D is a set of rules; and

• Q is a set of rules that defines a predicate Q on pairs consisting of a term of
signature Σ and an object in O.

Set-based operations (union, intersection, etc.) are lifted to extensible rule spec-
ifications by applying them pointwise to the constituent sets of the specification. For
example, the union rs1 ∪ rs2 of two rule specifications rs1 , 〈Σ1,∏ j∈J1 C j,D1,Q1〉 and
rs2 , 〈Σ2,∏ j∈J2 C j,D2,Q2〉 is given by the tuple 〈Σ1 ∪Σ2,∏ j∈J1∪J2 C j,D1 ∪D2,Q1 ∪Q2〉.
This thesis makes use of extensible rule specifications to specify constructs indepen-
dently and combine them as described above.

In contrast to the rules for catch considered in Section 2.2.5 which used λ appli-
cation for binding, the catch construct in Figure 3.2 uses a separate bind construct
instead. The motivation for using bind is to decouple the semantics of catch from the
λ -calculus.

The product category in Figure 3.2 uses a special notion of category that is dis-
tinguished from the traditional categories used in MSOS, CAT, the abrupt termination
category. Figure 3.3 defines this category, which has a single OK object, indicating that
no exception has been thrown, and as many objects as there are values, indicating that
an exception recording that value has been thrown. There is a morphism from the OK

object to either of the EXC(v) objects, but no morphisms in the other direction.

3.5.2 An abruptly terminating example

Using the category for abrupt termination, it is no longer necessary to wrap possibly-
abruptly terminating expressions in top-level program handlers in order to abruptly ter-
minate. For example, the expression plus′(throw(0),ω) from Section 3.1 now abruptly
terminates. Its computation is summarised by the following transition:

R ` plus′(throw(0),ω)/S[exc OK]→ plus′(stuck,ω)/S[exc EXC(0)]

Here, the configuration for the judgment R` plus′(stuck,ω)/S[exc EXC(0)] is a final config-
uration, so we choose to terminate the computation (even though the XTS technically
allows further transitions, since Definition 3.1 does not insist that final states do not
have further transitions). In Section 3.6 we show that it is straightforward to derive
a transition system that terminates and has no further transitions when the transition
system enters a final configuration.
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Collection of objects.

O, {OK} ∪ {EXC(v) | v ∈ Val}

Collection of morphisms.

M , {OK→ EXC(v) | v ∈ Val} ∪ {IdOK} ∪ {IdEXC(v) | v ∈ Val}

Composition operator.
A total function ‘ # ’ which, for all morphisms m1 : O1 → O2, m2 : O2 → O3 produces a
morphism m : O1→ O3:

m1 # m2 = m

Identity morphisms.

IdOK , OK 7→ OK

IdEXC(v) , EXC(v) 7→ EXC(v)

Figure 3.3: The category CAT for abrupt termination

3.5.3 Pretty-big-step XSOS for simple arithmetic expressions and
exception handling

Section 2.5 recalled how pretty-big-step semantics is a variant of natural semantics
that allows abrupt termination and divergence to be propagated without duplicate
premises. Following Charguéraud [Cha13], introducing abrupt termination or diver-
gence in pretty-big-step semantics still involves adding so-called “abort” rules for all
existing constructs in a language. Here, we show how to avoid modifying or introduc-
ing new rules for existing constructs using pretty-big-step XSOS rules.

Simple arithmetic expressions. Figure 3.4 gives an XSOS specification in pretty-big-
step style for simple arithmetic expressions. The rules are in the pretty-big-step style
since each fully evaluate a single sub-term before continuing with the rest of the compu-
tation. Unlike the pretty-big-step semantics recalled in Section 2.5, the pretty-big-step
XSOS rules in the figure do not rely on auxiliary syntax for intermediate expressions.
Recall that the motivation for relying on auxiliary syntax for intermediate expressions
was to avoid infinite derivations in the coinductive interpretation for computations
that are supposed to diverge. For simple arithmetic expressions there is no danger of
this happening, since numeric terms and values are distinct. But the pitfall arises in
connection with abrupt termination, as we shortly show.

Exception handling. Figure 3.5 gives an abbreviated XSOS specification in pretty-
big-step style for throwing and catching exceptions.
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Abstract syntax (Σplus).

Expr 3 e ::= plus(e,e) | num(n) | v
Val 3 v ::= n

n ∈ N, {0,1,2, . . .}

Auxiliary entities (Cplus).
Cplus , 1

Final configurations (Qplus).

Q(v,S)

Evaluation relation (DPBS
plus).

e1 ⇓ e′1 plus(e′1,e2) ⇓ e′

plus(e1,e2) ⇓ e′
(XSOS-PB-Plus1)

e2 ⇓ e′2 plus(n1,e′2) ⇓ e′

plus(n1,e2) ⇓ e′
(XSOS-PB-Plus2)

plus(n1,n2) ⇓ n1 +n2
(XSOS-PB-Plus)

num(n) ⇓ n
(XSOS-PB-Num)

Figure 3.4: Abbreviated pretty-big-step XSOS rules for simple arithmetic expressions

Figure 3.5 introduces a rule (XSOS-PB-AT-Refl) for propagating abrupt termination
in all constructs. Consider the language given by taking the union of the big-step XSOS
specifications in Figures 3.4 and 3.5. Using the coinductive interpretation of the rules
for this language, it is possible to prove that abruptly terminated terms diverge; e.g.:

stuck/exc err(0) ⇓ stuck/exc err(0)

...
plus(stuck,num(2))/exc err(0) ⇓ 42/exc err(0)

plus(stuck,num(2))/exc err(0) ⇓ 42/exc err(0)

throw(0)/exc OK ⇓ stuck/exc err(0)
...

plus(throw(0),num(2))exc OK ⇓ 42/exc err(0)

In order to avoid this issue, we adopt another convention for abbreviated XSOS rules;
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Abstract syntax (Σthrow). See Figure 3.2.
Auxiliary entities (Cthrow). See Figure 3.2.
Final configurations (Qthrow). See Figure 3.2.
Evaluation relation (DPBS

throw).

e ⇓ e′ throw(e′) ⇓ e′′

throw(e) ⇓ e′′
(XSOS-PB-Throw1)

throw(v)/exc OK ⇓ stuck/exc EXC(v)
(XSOS-PB-Throw)

e1/exc OK ⇓ e′1/exc OK catch(e′1,x,e2)/exc OK⇒ e′/exc ε

catch(e1,x,e2)/exc OK ⇓ e′/exc ε

(XSOS-PB-Catch1)

catch(v,x,e2) ⇓ v
(XSOS-PB-CatchV)

e1/exc OK ⇓ e′1/exc EXC(v) bind(x,v,e2)/exc OK ⇓ e′/exc ε

catch(e1,x,e2)/exc OK ⇓ e′/exc ε

(XSOS-PB-CatchE)

env ρ[x 7→ v] ` e ⇓ e′ env ρ ` bind(x,v,e′) ⇓ e′′

env ρ ` bind(x,v,e) ⇓ e′′
(XSOS-PB-Bind1)

bind(x,v,v′) ⇓ v′
(XSOS-PB-Bind)

Q(e,S)
R ` e/S ⇓ e/S

(XSOS-PB-AT-Refl)

Figure 3.5: Abbreviated pretty-big-step XSOS rules for abrupt termination

Convention 3.4 An abbreviated XSOS rule with premises:

e1→ e′1 e2→ e′2 . . . en→ e′

e→ e′

abbreviates a rule:
¬Q(e,S)

R ` e1/S −→ e′1/S2
R ` e2/S2 −→ e′2/S3

. . . R ` en/Sn −→ e′/S′

R ` e/S −→ e′/S′

Convention 3.5 An abbreviated XSOS simple rule:

e→ e′

abbreviates a rule:
¬Q(e,S)

R ` e/S −→ e′/S
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These conventions ensure that abbreviated rules always have a premise ensuring
that rules do not match for final configurations.

3.5.4 An abruptly terminating example

The term plus(throw(num(0)),num(1)) has the following derivation tree:

plus(stuck,num(1))/exc EXC(0) ⇓ plus(stuck,num(1))/exc EXC(0)

num(0)/exc OK ⇓ 0/exc OK

throw(num(0))/exc OK ⇓ stuck/exc EXC(0)

plus(throw(0),num(1))/exc OK ⇓ plus(stuck,num(1))/exc EXC(0)

Wrapping the term in a catch expression correctly handles the exception; i.e., the
following judgment holds:

env /0 ` catch(plus(throw(0),num(1)),x,x)/exc OK ⇓ 0/exc OK

These examples show that extensible transition system semantics supports exten-
sible specification of abrupt termination. In Chapter 4 we show how refocusing the
small-step semantics in Figure 3.2 automatically derives the pretty-big-step XSOS spec-
ifications in Figure 3.5, and that they are equivalent. First, we consider the relationship
between extensible transition systems and alternative variants of transition systems
from the literature.

3.6 Correspondence with other transition system variants

Extensible transition systems are a simple but novel variant of Mosses’ [Mos04] gen-
eralised transition systems. Proposition 3.8 establishes the correspondence between
generalised terminal transition systems (GTTS) and extensible terminal transition sys-
tems (XTTS). Proposition 3.6 shows how to embed any XTTS in an XTS.

Proposition 3.6 For each XTS 〈Γ,C,→,F〉, an LTTS 〈Γ[,L[,→[,T [〉 can be constructed
such that for each computation of the LTTS there is a computation of the XTS with the
same trace.

Proof. Let →[ , → \ →F where →F is the set of all transitions in the XTS (γ,o)→
(γ ′,o′) such that (γ,o) ∈ F . This embeds every computation in the LTTS into XTS. This
completes the construction.

Definition 3.7 An extensible terminal transition system (XTTS) is an extensible transi-
tion system that corresponds to an LTTS as described in Proposition 3.6.
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Proposition 3.8 For each GTTS 〈Γ,C,→,T 〉, an XTTS 〈Γ],C],→],F]〉 can be construc-
ted such that for each computation of the GTTS there is a computation of the XTTS
with the same trace and vice versa.

Proof. The proof is analogous to Mosses’ [Mos04, Proposition 3].
Let the set of objects in C be given by O, and the set of morphisms given by M. De-

fine Γ] , Γ×O, and F] , T×O. Then let γ
m−→ γ ′ hold in the GTTS iff γ×o m−→ γ ′×o holds

in the XTTS. Now every computation γ
m1−→ γ1

m2−→ ·· · in the GTTS has a corresponding
computation (γ,o) m1−→ (γ1,o1)

m2−→ ·· · in the XTTS, such that if the GTTS terminates with
γn ∈ T , then the XTTS has a corresponding trace with final configuration γn ∈ F].

Conversely, suppose that (γ,o) m1−→ (γ1,o1)
m2−→ ·· · is a computation in the XTTS. Then

o= dom(m1), and for i≥ 1, oi = cod(mi)= dom(mi+1). Hence mi and mi+1 are composable
for all i≥ 1. Moreover, for each computation in the XTTS which terminates with (γ,o)∈
F], we always have γn ∈ T . Hence γ

m1−→ γ1
m2−→ ·· · is a computation in the GTTS, and the

traces of the two computations are the same.

3.7 Assessment and related work

We have analysed the issue with translating the technique for abrupt termination from
small-step MSOS to big-step MSOS, and proposed extensible transition systems as a
solution to the problem. Section 3.5 shows that XTS and XSOS support modular abrupt
termination, and Section 3.6 relates XTS to other notions of transition systems in the
literature. In this section we assess the proposed solution, and compare it to other
frameworks and lines of research in the literature.

3.7.1 Relationship with previous approaches

The notion of abrupt termination presented in this chapter is a straightforward adap-
tation of Klin and Mosses’ technique for abrupt termination in MSOS [Mos04]. In
traditional approaches to abrupt termination, exceptions are modelled as a set of terms
that are distinct from values. As such, computations produce either a value or an ex-
ception, which are naturally modelled by a sum-type, reflected, e.g., in the notion of
outcome we recalled in connection with natural semantics in Section 2.4.5, where the
set of outcomes correspond to the sum:

Val+{EXC(v)}

The encoding of abrupt termination presented in this chapter can be seen to emulate
this sum-type, in that terminal computations always produce either a configuration
which corresponds to a value, or a configuration that is abruptly terminated. Unlike
the sum-type above, our encoding also records the structure of the term for which
abrupt termination occurred, rather than collapsing the entire term to an exception, as
is the case with the traditional approaches in the natural semantics and pretty-big-step
specifications that we recalled and illustrated in Sections 2.4 and 2.5.
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The fact that our encoding of abrupt termination records the structure of the abrupt-
ly terminated term makes it somewhat close in spirit to reduction semantics, where an
abruptly terminated term that makes it to the top-level contains a term that represents
the context in which abrupt termination occurred, such that the “hole” of the context is
given by the stuck term. For the variant of exceptions and exception handling that this
chapter considered, the extra information recorded in this term is redundant: the catch
construct discards the abruptly terminated term. But for more interesting notions of
control, having a retentive notion of abrupt termination that records the context in
which abrupt termination occurred is useful. For example, Sculthorpe et al. [STM16]
exploit this fact in order to give an MSOS for delimited continuations. In Section 4.6
we show how our encoding of abrupt termination enables a translation that is both
straightforward and correct-by-construction of Sculthorpe et al.’s semantics into pretty-
big-step semantics.

Besides being useful for giving semantics based on continuations, our retentive
notion of abrupt termination could conceivably also be useful for error-reporting, since
the structure of the term in which an error occurs is recorded in the abruptly terminated
configuration.

This chapter proposed to use XSOS in place of MSOS, but the difference between
XSOS and MSOS is mainly cosmetic: morphisms in generalised transition systems do
record the necessary information required to give a similar notion of abrupt termi-
nation. Even though configurations in MSOS by convention consist of pure abstract
syntax, one could record in one’s transition system a set of terminal morphisms along
with a set of terminal configurations. This would enable one to distinguish if evalu-
ation should continue on a par with extensible transition systems. For this thesis we
opted for a re-founding of MSOS because the notion of underlying transition system is
simpler, and translates to big-step semantics in a straightforward manner.

Madlener et al. [MSvE11] have shown how to give and work with MSOS rules
formally in Coq. The encoding relies on sophisticated use of Coq’s type classes, but al-
lows language features to be defined independently and combined and reasoned about.
They formalise labels as morphisms between objects, where the objects themselves
represent the auxiliary entities, similar to how extensible transition system semantics
emphasises the use of objects instead of morphisms for providing access to auxiliary
entities in rules. Later chapters of this thesis use Coq encodings of XSOS rules based
on a more naive encoding that supports copy-paste reuse in Coq.

3.7.2 Other notions of modularity and extensibility

Giving modular and extensible specifications is a subject of extensive study in the litera-
ture. Modular SOS, which this thesis extends, was itself incepted as a means of bringing
to SOS what monads [Mog91, CM93, Wad92] and monad transformers [LHJ95] bring
to denotational semantics.

Other authors have investigated other means of giving modular specifications in
SOS. Turi and Plotkin [TP97] investigated a class of operational semantics that is par-
ticularly well-behaved and which has corresponding denotational and categorical se-
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3. Extensible Transition System Semantics

mantics. Jaskelioff et al. [JGH11] noticed that the general structure observed and
described by Turi and Plotkin can be used to give modular operational semantics, where
both syntax and semantics can be separately defined and combined. Unlike the syntac-
tic flavour of modularity that is inherent to MSOS, modular operational semantics has
a more semantic flavour that relies on sophisticated mathematical machinery.

Cartwright and Felleisen [CF94] investigate an approach to giving extensible deno-
tational semantics. Their approach relies on having distinct domains for different kinds
of behaviour, where each of these domains are comprised of extensible sum-types.
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The last chapter showed how XSOS enables giving either extensible small-step or big-
step specifications. This reduces the effort involved in specifying and maintaining spec-
ifications in either style as a language evolves. But for some applications it is useful
to give and maintain specifications in both styles. For example, CompCert [Ler06]
uses both big-step and small-step semantics for its correctness proofs; certain financial
contract-based languages [PJES00, BBE15] use a denotational semantics (but might
have used big-step to the same avail) for specification and coarse equivalences and a re-
duction semantics as their basis for an execution model; Klein and Nipkow [KN06] use
a big-step semantics for compiler correctness, and a small-step semantics for their type
soundness proof; etc. By abstracting from intermediate small-steps, big-step semantics
are useful for coarse equivalences, whereas small-step is useful for finer equivalences
as well as progress/preservation style type soundness proofs. However, maintaining
multiple specifications of the same language is both tedious and error-prone. Such
specifications are usually proven equivalent or sound in relation to one another manu-
ally.

Refocusing, due to Danvy and Nielsen [DN04], is a transformation for converting
between small-step and big-step evaluation strategies for functional representations of
reduction semantics. This provides a means of inter-deriving semantics at different
levels of abstraction. Here, we observe that the refocusing transformation can be in-
ternalised in SOS, and in particular XSOS. This provides a means of relating small-step
and big-step XSOS rules automatically in a way that is correct-by-construction.
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4. Refocusing in Extensible SOS

4.1 Danvy and Nielsen’s refocusing transformation

This section recalls the essential steps involved in Danvy and Nielsen’s refocusing trans-
formation. We follow Danvy [Dan09] and refocus the simple arithmetic expressions
language using functional representations implemented in Standard ML [MTHM97].

Abstract syntax. The following datatype gives the abstract syntax for simple arith-
metic expressions:

datatype Term = NUM of int | PLUS of Term * Term

We let values be given by integers:

type Value = Int

Notion of contraction. The evaluation context specification for simple arithmetic
expressions from Figure 2.48 on page 60 is given by the following datatype:

datatype Ctx = C_MT

| C_PLUS1 of Term * Ctx

| C_PLUS2 of Value * Ctx

This datatype represents evaluation contexts as an ‘inside-out’ term in a zipper-like
fashion [Hue97], where C MT is the empty context, representing the top-level of the
term. A term is decomposed into a potential redex and a reduction context using the
following decompose function:

datatype PotRed = PR_PLUS of Term * Term

datatype ValOrDecomp = VAL of Value | DECOMP of PotRed * Ctx

fun decompose_term (PLUS (t1, t2), c)

= decompose_term (t1, C_PLUS1 (t2, c))

| decompose_term (NUM n, c)

= decompose_ctx (c, n)

and decompose_ctx (C_MT, n)

= VAL n

| decompose_ctx (C_PLUS1 (t2, c), n)

= decompose_term (t2, C_PLUS2 (n, c))

| decompose_ctx (C_PLUS2 (n1, c), n2)

= DECOMP (PR_PLUS (NUM n1, NUM n2), c)

fun decompose t = decompose_term (t, C_MT)

Here, decompose term decomposes a term, whereas decompose ctx decides based on
the current context and term whether a term is in normal-form (VAL n), whether a
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4.1. Danvy and Nielsen’s refocusing transformation

redex has been found (DECOMP ), or whether to continue decomposing the current
term.

We also define a recompose function for recomposing (or ‘plugging’) a term into a
context:

fun recompose (C_MT, t)

= t

| recompose (C_PLUS1 (t2, c), t1)

= recompose (c, PLUS (t1, t2))

| recompose (C_PLUS2 (v, c), t2)

= recompose (c, PLUS (NUM v, t2))

Now, we are equipped to define the contraction function given by the rule (RS-Plus) in
Figure 2.49:

datatype ContractOrErr = CONTRACTUM of Term | ERROR of string

fun contract (PR_PLUS (NUM n1, NUM n2))

= CONTRACTUM (NUM (n1+n2))

| contract _

= ERROR "Something went wrong"

Iteration. We define a normalize function that continuously decomposes a term into
a potential redex and a context, contracts the redex, and recomposes the resulting term
into the context to construct the next term in the reduction sequence:

datatype ResultOrWrong = RESULT of Value | WRONG of string

fun iterate (VAL v)

= RESULT v

| iterate (DECOMP (pr, c))

= (case contract pr

of (CONTRACTUM t’)

=> iterate (decompose (recompose (c, t’)))

| (ERROR s)

=> WRONG s)

fun normalize t = iterate (decompose t)

Here, iterate effectively implements the transitive closure of 7−→ from Figure 2.49
which iterates 7−→ towards a final value, if it exists.

Refocusing. The interpreter defined so far decomposes a term, contracts it, and re-
composes it. Danvy and Nielsen observe that, instead of recomposing a contractum
fully into the context just to decompose the term in the next step, we can plug the
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4. Refocusing in Extensible SOS

contractum into the current context, and continue decomposition in situ until the next
redex position in found. This essentially applies the transitive closure inside sub-terms
when they are visited, as opposed to visiting each sub-term multiple times in successive
iterations. Figure 4.1 is from Danvy’s lecture notes [Dan09, p. 68] and illustrates how
refocusing avoids recomposing and decomposing the term by the dotted ‘refocusing’
arrow in the diagram.

A refocus function that achieves the effect described above is thus given exactly
by the decompose term function:

fun refocus (t, c) = decompose_term (t, c)

Similarly, a refocused evaluation strategy is given by replacing the call (decompose
(recompose (c, t’))) in the body of iterate by (refocus (c, t’)):

fun iterate’ (VAL v)

= RESULT v

| iterate (DECOMP (pr, c))

= (case contract pr

of (CONTRACTUM t’)

=> iterate (refocus (c, t’)))

| (ERROR s)

=> WRONG s)

fun normalize’ t = iterate (refocus (t, C_MT))

The result is a so-called small-step abstract machine [DM08], which relies on an itera-
tion loop for driving its big-step evaluation strategy forward.

From small-step abstract machine to big-step functional evaluator. Danvy [Dan09,
DM08] shows how the small-step abstract machine can be transformed into a big-step
evaluator that essentially implements a big-step operational semantics. Appendix C.3
illustrates these steps.

4.1.1 Refocusing and SOS

It has been conjectured that any structural operational semantics can be expressed as
a reduction semantics.1 This brings many SOS rules within the reach of Danvy and
Nielsen’s refocusing transformation, by: transforming the SOS into a reduction se-
mantics, refocusing, and converting the resulting abstract machine back into a purely
structural big-step semantics. This sequence of transformational steps is provably cor-
rect: Sieczkowski et al [SBB11] has proven the correctness of refocusing formally, and
the remaining transformations rely on continuation-passing transformations [Plo75],
defunctionalisation [Rey72], lightweight fusion [OS07], and mechanical refactoring.

1Danvy [Dan08, Abstract] provides evidence to support this conjecture and attributes it to Felleisen.
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construct any of the intermediate terms in the reduction sequence on the
way towards a normal form:
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Figure 4.1: Reduction sequence with naive and refocused evaluation strategies
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Here, we consider an alternative and for our purposes more direct way of going
from small-step XSOS to pretty-big-step XSOS, along with a direct proof of its correct-
ness. The rest of this chapter is based on joint work with Mosses [BPM14a], and is
organised as follows:

• In Section 4.2 we show how to internalise the refocusing transformation in XSOS.
This provides a simple and direct way of transforming small-step XSOS rules into
corresponding pretty-big-step XSOS rules.

• Inspired by the criteria outlined by Danvy and Nielsen, Section 4.3 identifies
correctness criteria for refocusing in XSOS, and gives a proof of correctness based
on a rule format for XSOS without abrupt termination.

• Subsequently, we extend the format to allow rules to match against the structure
of auxiliary entities in the current configurations so as to encode abrupt termina-
tion as described in Section 3.5.

• Refocusing in XSOS provides a simple means of relating extensible and purely
structural specifications at different levels of abstraction in a rule format that suf-
fices to express a wide array of language features. Section 4.6 showcases the
applicability of refocusing in XSOS for deriving pretty-big-step XSOS for seman-
tics with continuations.

4.2 Refocusing in XSOS

The essential steps involved in the refocusing transformation are:

1. eagerly applying the transitive closure inside evaluable sub-terms; and

2. fusing the iteration relation and the small-step transition relation.

While these steps are typically [DN04, Dan09, BD07, DJZ11, Zer13, Joh15, Ser12]
applied to functional representations of reduction semantics, the steps are equally ap-
plicable to XSOS rules directly. Applying Danvy and Nielsen’s refocusing to SOS rules
gives a transformation from small-step XSOS into pretty-big-step XSOS.

The transformation essentially converts a small-step XSOS rule of the form:

¬Q(e,S)
R′ ` e/S→ e′/S′

R ` f (v1, . . . ,vn,e, . . .)/S→ f (v1, . . . ,vn,e′, . . .)/S′

into a pretty-big-step XSOS rule of the form:

¬Q(e,S)
R′ ` e/S ⇓ e′/S′ R ` f (v1, . . . ,vn,e′, . . .)/S′ ⇓ e′′/S′′

R ` f (v1, . . . ,vn,e, . . .)/S ⇓ e′′/S′′

We illustrate how the transformation applies to the small-step XSOS for simple arith-
metic expressions in Figure 4.2.
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4.2. Refocusing in XSOS

Abstract syntax (Σplus). (See Figure 3.4)
Auxiliary entities (Cplus). (See Figure 3.4)
Final configurations (Qplus).(See Figure 3.4)
Transition relation (Dplus).

e1→ e′1
plus(e1,e2)→ plus(e′1,e2)

(XSOS-Plus1)

e2→ e′2
plus(n1,e2)→ plus(n1,e′2)

(XSOS-Plus2)

plus(n1,n2)→ n1 +n2
(XSOS-Plus)

num(n)→ n
(XSOS-Num)

Figure 4.2: Abbreviated small-step XSOS rules for simple arithmetic expressions

R ` e/S −→ e′/S′ R ` e′/S′ −→? e′′/S′′

R ` e/S −→? e′′/S′′
(XSOS-Iter-Trans)

Q(e,S)
R ` e/S −→? e/S

(XSOS-Iter-Refl)

Figure 4.3: Iteration relation

Iteration. Figure 4.3 defines a relation −→? that is only reflexive on final states. Thus,
−→? iterates a small-step transition relation towards a final configuration, if it exists.

Refocusing. We introduce a refocusing rule:

¬Q(e,S)
R ` e/S −→? e′/S′

R ` e/S −→ e′/S′
(XSOS-Refocus)

This rule permits us to apply the iteration relation inside evaluable (hence the ¬Q(e,S)
in the premise of the rule) sub-terms such that they are evaluated as they are visited.
For example, whereas ordinary evaluation traverses the entire program term to con-
struct a derivation tree like the following (where we omit inessential auxiliary entities
in judgments):
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plus(1,2)→ 3
plus(plus(1,2),3)→ plus(3,3)

plus(plus(plus(1,2),3),5)→ plus(plus(3,3),5)
plus(plus(plus(1,2),3),5)→? 11

plus(3,3)→ 6
plus(plus(3,3),5)→ plus(6,5)

plus(plus(3,3),5)→? 11

plus(6,5)→ 11 11→? 11
plus(6,5)→? 11

By applying the refocusing rule, we can fully evaluate sub-terms in derivation trees; for
example:

plus(1,2)→ 3
plus(3,3)→ 6 6→? 6

plus(3,3)→? 6
plus(plus(1,2),3)→? 6

plus(plus(plus(1,2),3),5)→ plus(6,5)
plus(6,5)→ 11 11→? 11

plus(6,5)→? 11
plus(plus(plus(1,2),3),5)→? 11

The first step of the refocusing transformation is to eagerly apply the iteration relation
inside sub-terms. We achieve this by specialising all rules with premises in relation to
the refocusing rule; e.g., any rule:

¬Q(e,S)
R′ ` e/S −→ e′/S′

R ` f (. . . ,e, . . .)/S −→ e′′/S′′

is specialised as follows:

(XSOS-Refocus)

¬Q(e,S)
R′ ` e/S −→? e′/S′

R′ ` e/S −→ e′/S′

R ` f (. . . ,e, . . .)/S −→ e′′/S′′
≡

¬Q(e,S)
R′ ` e/S −→? e′/S′

R ` f (. . . ,e, . . .)/S −→ e′′/S′′

The transformation produces the refocused XSOS rules in Figure 4.4.

Fusing iteration and small-step transitions. We unfold the top-level iteration rule
(XSOS-Iter-Trans) from Figure 4.3 in relation to all possible rules; e.g., unfolding in
relation to a refocused rule:

¬Q(e,S) R′ ` e/S −→? e′/S′

R ` f (. . . ,e, . . .)/S −→ e′′/S′′
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4.3. Correctness of refocusing without abrupt termination

¬Q(e1,S) e1→? e′1
plus(e1,e2)→ plus(e′1,e2)

(XSOS-R-Plus1)

¬Q(e2,S) e2→? e′2
plus(n1,e2)→ plus(n1,e′2)

(XSOS-R-Plus2)

plus(n1,n2)→ n1 +n2
(XSOS-R-Plus)

num(n)→ n
(XSOS-R-Num)

R ` e/S −→ e′/S′ R ` e′/S′ −→? e′′/S′′

R ` e/S −→? e′′/S′′
(XSOS-Iter-Trans)

Q(e,S)
R ` e/S −→? e/S

(XSOS-Iter-Refl)

Figure 4.4: Refocused XSOS for simple arithmetic expressions

gives:

(XSOS-Iter-Trans)

¬Q(e,S) R′ ` e/S −→? e′/S′

R ` f (. . . ,e, . . .)/S −→ e′′/S′′ R ` e′′/S′′ −→? e′′′/S′′′

R ` f (. . . ,e, . . .)/S −→? e′′′/S′′′

≡
¬Q(e,S) R′ ` e/S −→? e′/S′ R ` e′′/S′′ −→? e′′′/S′′′

R ` f (. . . ,e, . . .)/S −→? e′′′/S′′′

Applying this specialisation to the refocused rules from Figure 4.4 and renaming the→?

relation to ⇓ gives the abbreviated pretty-big-step XSOS in Figure 4.5, which coincide
with the rules from Figure 3.4 on page 91 (abbreviated according to Conventions 3.4
and 3.5, page 92).

This section showed how to internalise refocusing in XSOS by applying the essential
steps of the transformation in XSOS rules directly, which provides a shortcut for relating
purely structural small-step and pretty-big-step specifications. Next, we give a direct
proof of correctness of refocusing in XSOS without abrupt termination.

4.3 Correctness of refocusing without abrupt termination

The previous section illustrated how to transform small-step rules into big-step rules. In
this section, we adapt the correctness criteria for refocusing due to Danvy and Nielsen
[DN04]. Subsequently we prove that small-step and pretty-big-step rules satisfying
these criteria are inductively equivalent.
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e1 ⇓ e′1 plus(e′1,e2) ⇓ e′

plus(e1,e2) ⇓ e′
(XSOS-PB-Plus1)

e2 ⇓ e′2 plus(n1,e′2) ⇓ e′

plus(n1,e2) ⇓ e′
(XSOS-PB-Plus2)

plus(n1,n2) ⇓ n1 +n2
(XSOS-PB-Plus)

num(n) ⇓ n
(XSOS-PB-Num)

Q(e,S)
R ` e/S ⇓ e/S

(XSOS-PB-Iter-Refl)

Figure 4.5: Derived pretty-big-step XSOS rules for simple arithmetic expressions

4.3.1 Rule schemas

In order to describe the structure of rules we rely on rule schemas for describing sets of
inference rules. An example suffices to describe what we understand by a rule schema.
We write:

∀e1 . . .en e′1 S S′.

¬Q(e1,S)
R′ ` e1/S −→ e′1/S′

R ` f (e1, . . . ,en, . . .)/S −→ f (e′1, . . . ,en, . . .)/S′

for the rule schema describing the set of all inference rules whose conclusion source
is some term with a term constructor f and e1, . . . ,en, . . . as sub-terms that match the
sort of the constructor. The ∀-quantification in the schema restricts which terms must
be variables in the inference rules that the schema describes. Terms that are not ∀-
quantified in the rule schema may be either variables or complex terms (i.e., terms
consisting of term constructors and/or variables). Thus, the schema above permits R
to be either a variable or a complex term. Similarly, the trailing dots in the list of
sub-terms e1, . . . ,en, . . . represent arbitrary (unrestricted) sub-terms.

An example of a rule satisfying the schema above is the rule (XSOS-Plus1) from
Figure 4.2, here given in its unabbreviated form:

¬Q(e1,S)
R ` e1/S −→ e′1/S′

R ` plus(e1,e2)/S −→ plus(e′1,e2)/S′

In this rule, e1,e2,S, and S′ are variables. R is a also a variable, which is a trivial instance
of a complex term, whereby it is admitted by the rule schema. The term constructor
for the rule is plus.
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4.3.2 Correctness criteria

The criteria for correctness of applying the refocusing transformation to transform a
small-step extensible rule specification into a pretty-big-step extensible rule specifica-
tion are given in Definition 4.1.

Definition 4.1 (Small-step left-to-right order of evaluation) Let Q(v,S) hold for all
terms v of a distinguished syntactic sort Val and any S. The set of rules for a term
constructor f consists of a set of simple rules and a set of rules with premises where:

• the set of rules with premises is such that there is exactly one rule that matches
each of the schemas:

∀e1 . . .en e′1 S S′.
¬Q(e1,S) R′ ` e1/S −→ e′1/S′

R ` f (e1, . . . ,en, . . .)/S −→ f (e′1, . . . ,en, . . .)/S′
(XRS- f 1)

∀e2 . . .en e′2 S S′.
¬Q(e2,S) R′ ` e2/S −→ e′2/S′

R ` f (v1,e2, . . . ,en, . . .)/S −→ f (v1,e′2, . . . ,en, . . .)/S′
(XRS- f 2)

...

∀en e′n S S′.
¬Q(en,S) R′ ` en/S −→ e′n/S′

R ` f (v1, . . . ,vn−1,en, . . .)/S −→ f (v1, . . . ,vn−1,e′n, . . .)/S′
(XRS- f n)

• the set of simple rules match the following schema:

¬Q( f (v1, . . . ,vn),S)
R ` f (v1, . . . ,vn)/S −→ e′/S′

(XRS- f )

Refocusing small-step rules that match the schemas in Definition 4.1 gives pretty-
big-step rules that match the schemas in Definition 4.2.

Definition 4.2 (Pretty-big-step left-to-right order of evaluation) Let Q(v,S) hold for all
v of a distinguished syntactic sort Val and any S. The set of rules for a term constructor
f consists of a set of simple rules; a set of single-premise rules; and a set of rules with
premises where:

• the set of rules with premises is such that there is exactly one rule that matches
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each of the schemas:

∀e1 . . .en e′1 S S′.

¬Q(e1,S)
R′ ` e1/S ⇓ e′1/S′ R ` f (e′1, . . . ,en, . . .)/S′ ⇓ e′/S′′

R ` f (e1, . . . ,en, . . .)/S ⇓ e′/S′′

(PBXRS- f 1)

∀e2 . . .en e′2 S S′.

¬Q(e2,S)
R′ ` e2/S ⇓ e′2/S′ R ` f (v1,e′2, . . . ,en, . . .)/S′ ⇓ e′/S′′

R ` f (v1,e2, . . . ,en, . . .)/S ⇓ r′/S′′

(PBXRS- f 2)

...

∀en e′n S S′.

¬Q(en,S)
R′ ` en/S ⇓ e′n/S′ R ` f (v1, . . . ,vn−1,e′n, . . .)/S′ ⇓ e′/S′′

R ` f (v1, . . . ,vn−1,en, . . .)/S ⇓ e′/S′′

(PBXRS- f n)

• the set of single-premise rules match the following schema:

¬Q( f (v1, . . . ,vn),S) ¬Q(e′,S′)
R ` e′/S′ ⇓ e′′/S′′

R ` f (v1, . . . ,vn)/S ⇓ e′′/S′′
(PBXRS- f 0)

• the set of simple rules match the following schema:

¬Q( f (v1, . . . ,vn),S) Q(e′,S′)
R ` f (v1, . . . ,vn)/S ⇓ e′/S′

(PBXRS- f )

Example 4.3 The small-step semantics for simple arithmetic expressions in Figure 4.2
on page 103 matches the rule schema in Definition 4.1. Similarly, the pretty-big-step
specification of simple arithmetic expressions in Figure 4.5 matches the rule schema in
Definition 4.2.

4.3.3 Proof of correctness

The proof generalizes the traditional approach to relating big-step and small-step rela-
tions that is found many places in the literature [Nip06, LG09, NK14, Cio13, PCG+13].
Whereas these proofs in the literature are given on an language-by-language basis, the
proof we supply here is generic up to the rule schema for left-to-right order of evalua-
tion.
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Theorem 4.4 (Refocusing is correct) For any transition relation → that implements
left-to-right order of evaluation and whose refocused counterpart is a relation ⇓, it
holds that:

Q(e′,S′) =⇒
(R ` e/S −→∗ e′/S′ ⇐⇒ R ` e/S ⇓ e′/S′)

Proof. The property is a direct consequence of Lemmas 4.5 and 4.7.

Lemma 4.5 (Refocusing is sound) For any transition relation→ that implements left-
to-right order of evaluation and whose refocused counterpart is a relation ⇓, it holds
that:

R ` e/S ⇓ e′/S′ =⇒ R ` e/S→∗ e′/S′

Proof (sketch). The proof is by rule induction on ⇓, using Lemma 4.6 below and the
transitivity of→∗. The full proof is in Appendix B.1.

Lemma 4.6 (Congruence of reflexive-transitive closure) For any transition relation→
that implements left-to-right order of evaluation, and where→ has a rule:

R′ ` e/S −→ e′/S′

R ` f (v1, . . . ,vn,e, . . .)/S −→ f (v1, . . . ,vn,e′, . . .)/S′

it holds that:
R′ ` e/S −→∗ e′/S′ =⇒

R ` f (v1, . . . ,vn,e, . . .)/S −→∗ f (v1, . . . ,vn,e′, . . .)/S′

Proof (sketch). The proof is by rule induction on the hypothesis. The full proof is in
Appendix B.1.

Lemma 4.7 (Refocusing is complete) For any transition relation → that implements
left-to-right order of evaluation and whose refocused counterpart is a relation ⇓, it
holds that:

R ` e/S −→∗ e′/S′ =⇒

R ` e/S ⇓ e′/S′

Proof (sketch). The proof is by rule induction on the hypothesis, and uses Lemma 4.8.
The full proof is in Appendix B.

Lemma 4.8 (Pretty-big-steps can be broken up into small-steps) For any transition re-
lation → that implements left-to-right order of evaluation and whose refocused coun-
terpart is a relation ⇓, it holds that:

¬Q(e,S) =⇒ R ` e/S −→ e′/S′ =⇒ R ` e′/S′ ⇓ e′′/S′′ =⇒

R ` e/S ⇓ e′′/S′′
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Proof (sketch). The proof is by rule induction on the second hypothesis, reasoning on
the structure of rules for →, and using Lemma 4.9. The full proof is in Appendix B.1.

Lemma 4.9 (Correspondence between terminating small-steps and pretty-big-steps)
For any transition relation → that implements left-to-right order of evaluation and
whose refocused counterpart is a relation ⇓, it holds that:

¬Q(e,S) =⇒ R ` e/S −→ e′/S′ =⇒ Q(e′,S′) =⇒

R ` e/S ⇓ e′/S′

Proof. By induction on→. The only case to consider is that of simple rules; specifically,
simple rules that make a transition to a terminal configuration. In this case, the goal is
immediate, since by the refocusing transformation there is exactly one corresponding
pretty-big-step rule of the same structure.

In Section 4.5 we show that it is straightforward to relax the definition of left-
to-right order of evaluation and extend the correctness argument for refocusing to
deal with abrupt termination as well. First, we show how Theorem 4.4 suffices to
automatically derive extensible pretty-big-step XSOS rules from the small-step XSOS
for λcbv.

4.4 Refocusing λcbv

We have already shown how the refocused rules look for simple arithmetic expressions.
In this section we consider how to give small-step and pretty-big-step XSOS rules, and
how Theorem 4.4 gives the correctness of the two relative to one another.

Figure 4.6 gives a small-step extensible rule specification for the call-by-value λ -
calculus. But these rules do not match the rule schema for left-to-right order of evalu-
ation as specified by our Definition 4.1! The culprit is the application rule (XSOS-λcbv-
AppC) which does evaluation inside the body of a closure:

env ρ ′[x 7→ v2] ` e→ e′

env ρ ` 〈x,e,ρ ′〉 v2→ 〈x,e′,ρ ′〉 v2

There are several ways ways in which we could argue that refocusing this rule is correct.
One is to use a more liberal rule schema. For example, one could conceivably permit
pattern matching against values and allow evaluation inside sub-terms in a similar style
to Churchill and Mosses’ [CM13] bisimulation format for MSOS. This would entail
a somewhat more involved rule schema than the one given in previous section. An
alternative approach that we pursue here is to observe that it is straightforward to
break the application construct into two constructs: one for binding the variable of
the closure to the argument value (app), and one for forcing evaluation of the closure
(force).2 Figure 4.7 summarises the rules for such constructs.

2Appendix A of this thesis breaks the application construct up in a similar way. The challenge with
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Abstract syntax (Σλcbv).

Expr 3 e ::= λx.e | e e | x | v
Val 3 v ::= 〈x,e,ρ〉

x,y ∈ Var , {x,y, . . .}

ρ ∈ Env, Var fin−→ Val

Auxiliary entities (Cλcbv).

Cλcbv , (env,CDISCRETE(Env))

Final configurations (Qλcbv).

Q(v,S)

Rule specification (Dλcbv).

env ρ ` λx.e→ 〈x,e,ρ〉 (XSOS-λcbv-Lam)

e1→ e′1
e1 e2→ e′1 e2

(XSOS-λcbv-App1)

e2→ e′2
〈x,e,ρ ′〉 e2→ 〈x,e,ρ ′〉 e′2

(XSOS-λcbv-App2)

env ρ ′[x 7→ v2] ` e→ e′

env ρ ` 〈x,e,ρ ′〉 v2→ 〈x,e′,ρ ′〉 v2
(XSOS-λcbv-AppC)

env ρ ` 〈x,v,ρ ′〉 v2→ v
(XSOS-λcbv-App)

x ∈ dom(ρ)

env ρ ` x→ ρ(x)
(XSOS-λcbv-Var)

Figure 4.6: Abbreviated XSOS rules for λcbv
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e1→ e′1
app(e1,e2)→ app(e′1,e2)

(XSOS-AltApp1)

e2→ e′2
app(〈x,e,ρ〉,e2)→ app(〈x,e,ρ〉,e′2)

(XSOS-AltApp2)

app(〈x,e,ρ〉,v)→ force(e,ρ[x 7→ v])
(XSOS-AltApp)

env ρ ′ ` e→ e′

env ρ ` force(e,ρ ′)→ force(e′,ρ ′)
(XSOS-Force1)

force(v,ρ)→ v
(XSOS-Force)

Figure 4.7: Alternative app and force constructs for λcbv

We can now establish the correctness of refocusing the original rules for the call-
by-value λ -calculus from Figure 4.6 by an argument summarised by the following dia-
gram:

small-step λcbv small-step λapp+force

pretty-big-step λcbv pretty-big-step λapp+force

(∗)

Theorem 4.4

(†)

It suffices to prove the easy horizontal properties (∗),(†); the vertical ones follow from
Theorem 4.4.

A logical next step is to consider refocusing exception handling constructs from
Figure 3.2. However, the rules for catch do not match the rule schema for left-to-right
order of evaluation. For example, the (XSOS-Catch1) rule:

R ` e1/S[exc OK]→ e′1/S′[exc OK]

catch(e1,x,e2)/S[exc OK]→ catch(e′1,x,e2)/S′[exc OK]

Here, S[exc OK] and S′[exc OK] are not variables, so the rule does not match the rule
schema in Definition 4.1.

4.5 Refocusing with abrupt termination

We relax the notion of left-to-right order of evaluation and show that this relaxation
preserves the correctness of refocusing. Definition 4.10 gives the extended rule schema

having the original application rule is that the corresponding (pretty-)big-step rules are not compositional.
We discuss this in connection with Lemma A.11 in Appendix A.
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4.5. Refocusing with abrupt termination

for small-step rules, and Definition 4.11 gives the correspondingly extended rule sche-
ma for pretty-big-step rules.

Definition 4.10 (Small-step left-to-right order of evaluation with abrupt termination)
Let Q(v,S) hold for all v of a distinguished syntactic sort Val and any S. The set of rules
for a term constructor f consists of a set of simple rules and a set of rules with premises
where:

• the set of rules with premises is such that there is exactly one rule for each ei that
matches each of the schemas (similar to Definition 4.10):

∀ei . . .en S S′.

¬Q(ei,S)
R′ ` ei/S→ e′i/S′

R ` f (v1, . . . ,vi−1,ei,ei+1, . . . ,en, . . .)/S→
f (v1, . . . ,vi−1,e′i,ei+1, . . . ,en, . . .)/S′

(XRS- f i)

Alternatively, sub-term ei may have a pair of rules instead that match the follow-
ing schemas where X is a set of final configurations:

∀ei . . .en S S′.

¬Q(ei,S) (e′i,S
′) ∈ X

R′ ` ei/S→ e′i/S′

R ` f (v1, . . . ,vi−1,ei,ei+1, . . . ,en, . . .)/S→ e′′/S′′
(XRS-AT- f i)

∀ei . . .en S S′.

¬Q(ei,S) (e′i,S
′) 6∈ X

R′ ` ei/S→ e′i/S′

R ` f (v1, . . . ,vi−1,ei,ei+1, . . . ,en, . . .)/S→
f (v1, . . . ,vi−1,e′i,ei+1, . . . ,en, . . .)/S′

(XRS-OK- f i)

• the set of simple rules match the schema from Definition 4.1.

Definition 4.11 (Pretty-big-step left-to-right order of evaluation with abrupt termina-
tion) Let Q(v,S) hold for all v and any S. The set of rules for a construct f consists
of a set of simple rules; a set of single-premise rules; and a set of rules with premises
where:

• the set of rules with premises is such that there is exactly one rule for each ei that
matches each of the schemas:

∀ei . . .en S S′.

¬Q(ei,S) R′ ` ei/S ⇓ e′i/S′

R ` f (v1, . . . ,vi−1,e′i,ei+1, . . . ,en, . . .)/S′ ⇓ e′/S′′

R ` f (v1, . . . ,vi−1,ei,ei+1, . . . ,en, . . .)/S ⇓ e′/S′′
(PBXRS- f i)
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4. Refocusing in Extensible SOS

Alternatively, sub-term ei may have a pair of rules instead that match the follow-
ing schemas where X is a set of final configurations:

∀ei . . .en S S′.

¬Q(ei,S) (e′i,S
′) ∈ X

R′ ` ei/S ⇓ e′i/S′ R ` e′′/S′′ ⇓ e′′′/S′′′

R ` f (v1, . . . ,vi−1,ei,ei+1, . . . ,en, . . .)/S ⇓ e′′′/S′′′
(PBXRS-AT- f i)

∀ei . . .en S S′.

¬Q(ei,S) (e′i,S
′) 6∈ X R′ ` ei/S ⇓ e′i/S′

R ` f (v1, . . . ,vi−1,e′i,ei+1, . . . ,en, . . .)/S′ ⇓ e′′/S′′

R ` f (v1, . . . ,vi−1,ei,ei+1, . . . ,en, . . .)/S ⇓ e′′/S′′
(PBXRS-OK- f i)

• the set of rules with a single premise and simple rules match the schemas from
Definition 4.2.

The catch construct from Figure 3.2 on page 88 matches the alternative schema
for rules with premises, since the rules for catch are equivalently given by letting
X , {(e,S[exc EXC(v)])} in the following rules:

¬Q(e1,S) (e′1,S
′) 6∈ X

R ` e1/S→ e′1/S′

R ` catch(e1,x,e2)/S→ catch(e′1,x,e2)/S′
(XSOS-Catch1)

catch(v,x,e2)→ v
(XSOS-CatchV)

¬Q(e1,S) (e′1,S
′) ∈ X

R ` e1/S→ e′1/S′

R ` catch(e1,x,e2)/S→ bind(x,v,e2)/S′[exc OK]

(XSOS-CatchE)

If we can prove that refocusing is sound for rules with left-to-right order of evalua-
tion with abrupt termination as defined in Definition 4.10, we get as a corollary that
the translation between small-step and pretty-big-step rules with abrupt termination is
correct.

4.5.1 Extended proof of correctness

We extend the proof of Theorem 4.4.

Theorem 4.12 (Refocusing with abrupt termination is correct) For any transition re-
lation→ that implements left-to-right order of evaluation with abrupt termination and
whose refocused counterpart is ⇓, it holds that:

Q(e′,S′) =⇒(
R ` e/S→∗ e′/S′ ⇐⇒ R ` e/S ⇓ e′/S′

)
Proof. The property is a direct consequence of Lemmas 4.13 and 4.15.
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Lemma 4.13 (Refocusing with abrupt termination is sound) For any transition relation
→ that implements left-to-right order of evaluation with abrupt termination and whose
refocused counterpart is a relation ⇓, it holds that:

R ` e/S ⇓ e′/S′ =⇒

R ` e/S→∗ e′/S′

Proof. The proof is a straightforward extension of the proof of Lemma 4.5, using
Lemma 4.14 (see below).

Lemma 4.14 (Congruence of reflexive-transitive closure with abrupt termination) For
any transition relation→ that implements left-to-right order of evaluation with abrupt
termination, and where→ has a pair of rules:

¬Q(ei,S) (e′i,S
′) ∈ X

R′ ` ei/S→ e′i/S′

R ` f (v1, . . . ,vi−1,ei,ei+1, . . . ,en, . . .)/S→ e′′/S′′

¬Q(ei,S) (e′i,S
′) 6∈ X

R′ ` ei/S→ e′i/S′

R ` f (v1, . . . ,vi−1,ei,ei+1, . . . ,en, . . .)/S→
f (v1, . . . ,vi−1,e′i,ei+1, . . . ,en, . . .)/S′

where X is a set of final configurations. For each such pair of rules, it holds that:

R′ ` ei/S→∗ e′i/S′ =⇒ (e′i,S
′) ∈ X =⇒

R ` f (v1, . . . ,vi−1,ei,ei+1, . . . ,en, . . .)/S→∗ e′′/S′′
(1)

and:

R′ ` ei/S→∗ e′i/S′ =⇒ (e′i,S
′) 6∈ X =⇒

R ` f (v1, . . . ,vi−1,ei,ei+1, . . . ,en, . . .)/S→∗ f (v1, . . . ,vi−1,e′i,ei+1, . . . ,en, . . .)/S′

(2)

Proof. The proof of (2) follows the structure of Lemma 4.6. The proof of (1) is by rule
induction on→∗. The full proof is in Appendix B.1.

Lemma 4.15 (Refocusing with abrupt termination is complete) For any transition re-
lation→ that implements left-to-right order of evaluation with abrupt termination and
whose refocused counterpart is a relation ⇓, it holds that:

R ` e/S −→∗ e′/S′ =⇒ (e′,S′) ∈ F =⇒

R ` e/S ⇓ e′/S′

Proof. The proof structure is the same as Lemma 4.7, and relies on Lemma 4.16, which
is an extended version of Lemma 4.8.
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4. Refocusing in Extensible SOS

Lemma 4.16 (Pretty-big-steps can be broken up into small-steps with abrupt termina-
tion) For any transition relation → that implements left-to-right order of evaluation
with abrupt termination and whose refocused counterpart is a relation ⇓, it holds that:

R ` e/S→ e′/S′ =⇒ R ` e′/S′ ⇓ e′′/S′′ =⇒

R ` e/S ⇓ e′′/S′′

Proof. The proof is a straightforward extension of Lemma 4.8. The extended proof is
in Appendix B.1.

Lemma 4.17 (Correspondence between terminating small-steps and refocusing with
abrupt termination) For any transition relation → that implements left-to-right order
of evaluation with abrupt termination and whose refocused counterpart is ⇓, it holds
that:

¬Q(e,S) =⇒ R ` e/S→ e′/S′ =⇒ Q(e′,S′) =⇒

R ` e/S ⇓ e′/S′

Proof. The proof is a straightforward extension of Lemma 4.9. The full proof is in
Appendix B.1.

A corollary of Theorem 4.12 is that the pretty-big-step rules in Figure 3.5 on page 92
correspond to the small-step rules in Figure 3.2 on page 88, and that the encoding of
abrupt termination proposed in Chapter 3 translates from small-step to pretty-big-step
semantics.

Another corollary of Theorem 4.12 is that it is possible to give big-step semantics for
delimited continuations using big-step rules without explicit representation of program
context.

4.6 Deriving pretty-big-step rules for delimited control

A long-standing problem with purely structural approaches to specification, and par-
ticularly big-step specifications, is how to deal with semantics for continuations and
control: for example, in their paper on Typing First-Class Continuations in ML , Duba
et al. give a natural semantics for call/cc in Standard ML and remark [DHM91, p.
170]:

The resulting semantics differs substantially from the dynamic semantics of
Standard ML. This may be taken as evidence that the addition of call/cc
to Standard ML would be a substantial change, rather than an incremental
modification, to the language.

Duba et al.’s natural semantics is derived by defunctionalising a continuation-passing
denotational semantics, which yields a natural semantics with explicit evaluation con-
texts. Similarly, Roşu remarks that in small-step and big-step SOS and MSOS “it is
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inconvenient (and non-modular) to define complex control statements.” [RS, 10, p.
399].

Recent work by Sculthorpe et al. [STM16] shows that small-step (M)SOS does
support specifying the semantics of call/cc in a modular way. The MSOS semantics of
Sculthorpe et al. uses the modular representation of exceptions due to Klin [Mos04]
that we recalled in Section 2.3.4.

Here, we translate Sculthorpe et al.’s semantics into XSOS and refocus it. As
a result, we get a pretty-big-step semantics for delimited control that is correct-by-
construction. This provides evidence that adding call/cc to Standard ML does not
require as substantial a change as alluded to by Duba et al. or Felleisen and Wright. It
suffices to: use modular abrupt termination as illustrated here; and factor the natural
semantics in the Definition of Standard ML [MTHM97] into pretty-big-step rules.

4.6.1 What are delimited continuations?

Felleisen [Fel88, Fel87] introduced delimited control as a generalisation of imperative
control operators, such as Landin’s J operator [Lan65] or Scheme’s call/cc (short for
call with current continuation) [SS75, Cli87].

Call/cc provides access to the current continuation by passing the current continu-
ation to a function. For example, evaluating the program:

call/cc(λk.plus((k 1),2))

proceeds by binding the variable ‘k’ to a special kind of abstraction. When this abstrac-
tion is invoked, it returns control to the “current continuation”, i.e., the continuation
at the point at which call/cc was invoked. For the simple program above, the cur-
rent continuation for call/cc is the top-level identity continuation, (λx.x). Evaluating
(k 1) inside the body of the abstraction thus aborts the plus operation, and replaces
the continuation with ((λx.x) 1), making the result of evaluating the program ‘1’.

We can also use call/cc in the context of other expressions:

plus(3,call/cc(λk.plus((k 1),2)))

In this program, the continuation at the point of evaluating call/cc is (λx.plus(3,x)),
and so the result of evaluating this program expression is 4.

Delimited continuations, as the name implies, provides a means of delimiting the
current continuation. They generalise control constructs such as call/cc in the sense
that the semantics of call/cc can be expressed in terms of delimited control operators.
Following Felleisen [Fel88], # (pronounced prompt) is used to delimit continuations,
and control invokes an abstraction using the current delimited continuation. Unlike
call/cc which aborts the current computation when invoking a continuation, control
merely passes the current continuation as an abstraction. Consider the program:

#(plus(3,control(λk.plus(k 1,2))))

The result of evaluating this program is 6. At the point of evaluating control, the
program binds ‘k’ to the current delimited continuation which, in this case, scopes the
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entire program, making the continuation (λx.plus(3,x)). Applying the continuation in
the expression (k 1) does not abort the current computation, but instead continues with
4 in the left branch of the plus expression.

With delimited continuations we can also apply continuations multiple times:

plus(4,#(plus(3,control(λk.plus(k (k 1)),2))))

The result of evaluating this program is: 4+3+3+1+2 = 13. For more examples, see
[FWFD88, Fel88, STM16].

4.6.2 Small-step XSOS for delimited continuations

Figure 4.8 gives the straightforward translation of Sculthorpe et al.’s [STM16] MSOS
semantics for delimited continuations into XSOS. The semantics relies on a distin-
guished set of auxiliary variables (that Sculthorpe et al. [STM16] call meta-identifiers).
The rules for ‘#’ are instances of the rule schemas in Definition 4.10. Thus, the ‘#’
construct listens for the control status signal. If a signal occurs, this indicates that we
are abruptly terminating, and that we are currently constructing a continuation. The
signal records a fresh auxiliary variable x, which is used as the binder in the delimited
continuation, used when (XSOS-PromptC) constructs the continuation and applies the
continuation to the abstraction v, which is allowed to use it.

The motivation for using a distinguished set of auxiliary variables and an auxiliary
environment for bindings in connection with delimited control is that a continuation
may contain closures with static bindings. Consider the following program:

#(〈x,control(v),ρ〉 1)/ctl NONE

→ v (λy.let(y,y,〈x,y,ρ〉 1))/ctl NONE

If we were to use ordinary variables and environments for constructing the continua-
tion instead, the resulting program would be:

→ v (λy.〈x,y,ρ〉 1))/ctl NONE

Recalling that the application rule relies on the statically scoped environment ρ of
the closure, any binding of variable y in the continuation will always be shadowed by
the environment ρ of the continuation. This semantic anomaly is avoided by using
auxiliary environments which are not statically scoped.

4.6.3 Pretty-big-step XSOS for delimited continuations

Figure 4.9 gives the derived pretty-big-step rules for delimited continuations. By The-
orem 4.12, the rules implement the same semantics as the small-step rules.

This proves that there is no inherent problem with giving semantics to delimited
control-operators using purely structural small-step or pretty-big-step semantics, pro-
vided one uses the retentive notion of abrupt termination due to Klin and Mosses
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Abstract syntax (Σcontrol).

Expr 3 e ::= #(e) | control(e) | let(x,e,e) | x | λx.e | e e

v ∈ Val, /0

ControlStat 3 c ::= NONE | CTRL(x,v)

x,y ∈ AuxVar , {x,y, . . .}

ρ ∈ AuxEnv, AuxVar fin−→ Val

Auxiliary entities.

Ccontrol ,
{
(ctl,CAT(ControlStat)),(aenv,CDISCRETE(AuxEnv))

}
Final configurations (Qcontrol).

Q(v,S) Q(e,S[ctl CTRL(x,v)])

Rule specification.

e/ctl NONE→ e′/ctl NONE

#(e)/ctl NONE→ #(e′)/ctl NONE

(XSOS-Prompt1)

#(v)→ v
(XSOS-PromptV)

e/ctl NONE→ e′/ctl CTRL(x,v)

#(e)/ctl NONE→ v (λx.let(x,x,e′))/ctl NONE

(XSOS-PromptC)

e→ e′

control(e)→ control(e′)
(XSOS-Control1)

fresh(x)
control(v)/S[ctl NONE]→ x/S[ctl CTRL(x,v)]

(XSOS-Control)

e1→ e′1
let(x,e1,e2)→ let(x,e′1,e2)

(XSOS-AuxLet1)

aenv ρ[x 7→ v] ` e→ e′

aenv ρ ` let(x,v,e)→ let(x,v,e′)
(XSOS-AuxLet2)

let(x,v,v′)→ v′
(XSOS-AuxLet)

x ∈ dom(ρ)

aenv ρ ` x→ ρ(x)
(XSOS-AuxVar)

Figure 4.8: Abbreviated small-step XSOS rules for delimited control
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e/ctl NONE ⇓ e′/ctl NONE #(e′)/ctl NONE ⇓ e′′/ctl c

#(e)/ctl NONE ⇓ e′′/ctl c
(XSOS-PB-Prompt1)

#(v) ⇓ v
(XSOS-PB-PromptV)

e/ctl NONE ⇓ e′/ctl CTRL(x,v) v (λx.let(x,x,e′))/ctl NONE ⇓ e′′/ctl c

#(e)ctl NONE ⇓ e′′/ctl c
(XSOS-PB-PromptC)

e ⇓ e′ control(e′) ⇓ e′′

control(e) ⇓ e′′
(XSOS-PB-Control1)

fresh(x)
control(v)/S[ctl NONE] ⇓ x/S[ctl CTRL(x,v)]

(XSOS-PB-Control)

e1 ⇓ e′1 let(x,e′1,e2) ⇓ e′′

let(x,e1,e2) ⇓ e′′
(XSOS-PB-AuxLet1)

aenv ρ[x 7→ v] ` e ⇓ e′ aenv ρ ` let(x,v,e′) ⇓ e′′

aenv ρ ` let(x,v,e) ⇓ e′′
(XSOS-PB-AuxLet2)

let(x,v,v′) ⇓ v′
(XSOS-PB-AuxLet)

x ∈ dom(ρ)

aenv ρ ` x ⇓ ρ(x)
(XSOS-PB-AuxVar)

Q(e,S)
R ` e/S ⇓ e/S

(XSOS-PB-AT-Refl)

Figure 4.9: Abbreviated pretty-big-step XSOS rules for delimited control

[Mos04] that records the structure of the term being abruptly terminated, and which is
close in spirit to reduction semantics, as argued in Section 3.7.1. In this thesis we have
adapted this notion of abrupt termination to XSOS and (pretty-)big-step semantics,
which broadens the applicability of the technique.

A natural question to ask is: could we have used natural semantics instead of pretty-
big-step semantics to describe delimited control? The pretty-big-step rules in Figure 4.9
crucially rely on the fact that the pretty-big-step rules preserve the structure of the
current term when abruptly terminating: this permits us to construct the continuation
by raising raising the control status flag. In contrast, consider if we were to have a
standard natural semantics rule for adding natural numbers:

e1⇒ n1 e2⇒ n2

plus(e1,e2)⇒ n1 +n2
(XNS-Plus)

In case a control flag is raised during evaluation of e1, the structure of the plus-term
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is not obviously preserved as abrupt termination is propagated through the deriva-
tion tree. The necessary structure for continuations would be recovered by introduc-
ing an explicit notion of continuation (or reduction context), similarly to Duba et al.
[HDM93], or by recording it implicitly in the structure of derivation tree, similarly to
the approach illustrated here.

4.6.4 From delimited control to call/cc

As recalled by Sculthorpe et al. [STM16], delimited control can be used to imple-
ment the semantics of many control constructs from the literature, including shift/reset
[DF90, BD06] and call/cc [SF90]. Our small-step XSOS in Figure 4.8 corresponds
to Sculthorpe et al.’s [STM16], differing only in our choice of using XSOS and the
state-based representation of modular abrupt termination introduced in Chapter 3. By
Theorem 4.12, our pretty-big-step XSOS in Figure 4.9 corresponds to the small-step
XSOS.

4.7 Assessment and related work

The work presented in this section provides evidence that XSOS is useful for giving
and relating extensible specifications at different levels of abstraction. To reach these
insights we have combined ideas from research in relating small-step and big-step eval-
uation strategies [DN04, Dan09, BD07, Zer13] with research on modular representa-
tion of abrupt termination in small-step MSOS [Mos04, STM16]. The correctness proof
of refocusing that this Chapter presents also generalises well-known proof techniques
for relating small-step and big-step purely structural semantics [Nip06, LG09, NK14,
Cio13, PCG+13].

Ciobâcă [Cio13] considered a similar transformation from small-step to big-step
rules. Unlike us, he proposed to convert small-step SOS rules directly to natural seman-
tics. As Section 4.6 of this thesis shows, there are definite advantages to converting to
pretty-big-step instead. Ciobâcă does not consider modularity or extensibility of rules
either.

This chapter showed how to internalise the refocusing transformation in XSOS, and
gave a correctness proof based on rule schemas for semantics implementing left-to-right
order of evaluation. These correctness criteria are closely related to the criteria given
by Danvy and Nielsen in their original exposition on refocusing [DN04]. Sieczkowski
et al. [SBB11] has since relaxed the criteria to include context-insensitive reductions.
Both of these sets of authors consider inner-most reduction strategies, i.e., reduction
strategies that search for the inner-most redex. This is in contrast to semantics relying
on outer-most reductions. Johannsen [Joh15] studies techniques for refocusing such
semantics. Our correctness criteria and argument is most closely related to the criteria
of Danvy and Nielsen, although our notion of left-to-right order of evaluation in XSOS
does support contractions that depend on the context (e.g., the environment, exception
status flags, etc.). Our rule schemas do not support outermost reduction, however.
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The rule schema that we presented here is reminiscent of results proven by several
other authors. Ciobâcă provides a rule schema for big-step rules and outlines a trans-
formation and a proof of correspondence between small-step and big-step semantics.
The proof assumes that the small-step relation in confluent. In contrast, the definitions
of left-to-right evaluation (Definition 4.1 and 4.10) admit non-deterministic choice be-
tween axioms but not congruence rules, and thus supports non-confluent relations.

Bodin et al. [BJS15] provide a rule format for pretty-big-step rules and utilise
this to provide a framework for abstract interpretation over rules. They also provide a
formalisation of this rule format in Coq. The proof we provided in this chapter is purely
pen-and-paper (although it mirrors the structure of ad hoc proofs in Coq, as illustrated
in the Coq formalisation accompanying this thesis3), and it would be interesting to see
if their encoding is amenable to formalising the correctness proof of refocusing with
abrupt termination in XSOS.

The rule schema introduced in this chapter also draws inspiration from work on
formalising and proving meta-theory about (M)SOS [MMR10, CM13, MRG07]. These
lines of work study mainly bisimulation equivalences for small-step semantics and pro-
cess algebras, which typically support non-determinism. Relating the rule format pro-
posed here to these lines of work would give a plethora of meta-theoretical results for
free, including that bisimulation is a congruence. Since small-step XSOS rules express
transition system semantics that closely correspond to small-step MSOS rules, we ex-
pect in particular the results of Churchill and Mosses et al. [MMR10, CM13] to carry
over to languages with left-to-right order of evaluation. We leave verification of this
expectation to future work.

Our motivation for internalising refocusing in XSOS was that the connection be-
tween small-step and pretty-big-step XSOS was so clear and intuitive that we found it
unnatural to think of it in terms of reduction contexts. But, on further inspection, the
correspondence between small-step XSOS and reduction semantics may be a lot closer
than first impressions lead us to believe: as recalled in Section 2.8, some of the main
differences between reduction semantics and SOS are the customary use of substitu-
tions rather than environments in reduction semantics; and the need to distinguish
different kinds of contexts in order to match the closest enclosing handler. But we do
not see any inherent problems with implementing in reduction semantics the modular
encodings of features recalled and presented in this thesis. If our expectation that the
modular encodings could be implemented in reduction semantics is true, we might rely
on Sieczkowski et al.’s correctness proof in order to relate small-step and big-step ex-
tensible specifications with their reduction semantic counterparts, instead of the proof
based on rule schemas given in this chapter. We leave a further exploration of these
expectations to future work.

3http://cs.swansea.ac.uk/~cscbp/xtss.zip
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Chapter 4 showed how to systematically derive pretty-big-step versions of extensible
transition system specifications (and vice versa). The derived relations were inductively
defined, whereby it gives semantics to programs with finite derivation trees, correspond-
ing to programs that terminate. However, many interesting languages (such as the λcbv
language considered in earlier chapters) have programs that diverge. It is important to
support expressing and reasoning about both converging and diverging computations.

In this chapter we present a novel and modular approach to representing diver-
gence in pretty-big-step semantics. Using this approach, we show that pretty-big-step
rules produced by the refocusing transformation in the previous section are equivalent
to small-step rules for diverging computations too.

5.1 Divergence as modular abrupt termination

Section 2.5 recalled how pretty-big-step rules support more concise specification of
abrupt termination and divergence than corresponding natural semantics rules. Fol-
lowing Charguéraud, [Cha13], divergence is represented using a distinct term DIV that
is only derivable under the coinductive interpretation and only for terms that diverge.
In order to propagate this term to the top-level, Charguéraud uses so-called ‘abort rules’
(recalled in Figure 2.40). Here, we show how to avoid such abort rules by adapting
the encoding of modular abrupt termination to give semantics for modular divergence.

5.1.1 Divergence in small-step and pretty-big-step XSOS

Figure 5.2 summarises the pretty-big-step XSOS rules for λcbv. Certain computations
do not coevaluate using these rules, even though we can prove that they diverge using
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5. Modular Divergence in Extensible SOS

their small-step semantics. For example applying ω to a stuck term (0 0):

R ` ω (0 0)/S
∞−→

but:
6 ∃v S′. R ` ω (0 0)/S ⇓

co v/S′

The lack of expressiveness for pretty-big-step coevaluation, in comparison to small-step
semantics, is that it entails constructing derivation trees for all branches of a computa-
tion. Since there are no valid derivations for (0 0), the coinductive interpretation ⇓co

cannot be used to prove that the term coevaluates.
The lack of flexibility for the coinductive interpretation of big-step relation is not

limited to terms with stuck sub-terms: Leroy and Grall [LG09] give Filinski’s term1

as an example of a well-typed term that diverges which is provable using small-step
semantics, but does not coevaluate using big-step semantics.2

Traditional approaches to avoiding these issues in natural semantics include: giving
a separate set of rules for proving divergence, following [CC92, LG09]; using coinduc-
tive trace-based rules, following [NU09, Dan12, LG09]; or defining values coinduc-
tively, following [Anc12]. Pretty-big-step semantics [Cha13] uses abort rules to avoid
the issue, such that divergence is propagated similarly to abrupt termination. Here,
we propose to use pretty-big-step semantics, but to propagate divergence using the
modular encoding of exceptions instead.

5.1.2 Making divergence syntactically distinguishable

The idea is to add a new auxiliary entity for indicating divergence. Figure 5.1 sum-
marises an extensible rule specification for divergence. Here, DivStat is a status flag
for indicating either divergence, denoted by �, or convergence, denoted by ‘�’. There
is a single rule for modular divergence, (XSOS-Div). The purpose of this rule is to
propagate abrupt termination while disregarding the structure of terms produced by a
derivation: the rule relates the configuration to an arbitrary other configuration, and
only remembers the state of the divergence flag. Using the approach based on this
divergence rule only allows us to infer that a computation diverges, but does not, for
example, provide information about potential observable outputs of such divergence.
This is analogous to the non-trace-based approaches to representing divergence due to
Cousot and Cousot [CC92], Leroy and Grall [LG09], and Charguéraud [Cha13]. Thus,
the structure of configurations that that are the outcomes of coevaluation resulting in a
divergent state is essentially “garbage”. It does, however, make it very straightforward
to augment a set of big-step rules to make their coinductive interpretations contain the
same set of programs as their small-step counterparts, and to express and reason about
these relations in a theorem prover like Coq.

1So-called since the discovery of the term is attributed by Leroy and Grall to Filinski.
2Although Leroy and Grall uses a substitution-based semantics, we conjecture that the coinductive

interpretation of semantics based on environments and closures is equivalent to the coinductive interpre-
tation of semantics based on substitutions.
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5.1. Divergence as modular abrupt termination

Abstract syntax.
DivStat 3 δ ::= � | �

Auxiliary entities (CDIV).

CDIV ,
{
(div,CAT(DivStat))

}
Final configurations (QDIV).

QDIV(e,S[div �])

Rule specification.

R ` eS[div �] ⇓ e′/S′[div �]
(XSOS-Div)

Figure 5.1: Extensible rule specification for divergence

Consider the union of the extensible rule specification for divergence in Figure 5.1
and the extensible rule specification for λcbv given by the pretty-big-step rules for λcbv
given in Figure 5.2.

Proposition 5.1 (ω diverges using pretty-big-step XSOS and modular divergence) The
expression ω diverges in any context, i.e.:

∀R ρ S v S′. R[env ρ] ` ω/S[div �] ⇓
co v/S′[div �]

Proof. The proof is by guarded coinduction. By consecutive applications of (XSOS-PB-
λcbv-App1) and (XSOS-PB-λcbv-App2) we get the goal:

R[env ρ] ` 〈x,x x,ρ〉 〈x,x x,ρ〉/S[div �] ⇓
co v/S′[div �] (Goal)

Applying the rule (XSOS-PB-λcbv-AppC) from Figure 5.2 to the goal, we get the two
proof obligations:

R[env ρ[x 7→ 〈x,x x,ρ〉]] ` x x/S[div �] ⇓
co v/S′[div �] (Goal1)

R[env ρ] ` 〈x,v,ρ〉 〈x,x x,ρ〉/S′[div �] ⇓
co v/S′[div �] (Goal2)

The second of these proof obligations follows trivially by (XSOS-PB-λcbv-App). We can
now generalize (Goal1) to get:

∀S. R[env ρ[x 7→ 〈x,x x,ρ〉]] ` x x/S[div �] ⇓
co v/S′[div �] (Goal1′)

We use this goal as our coinduction hypothesis. By applying (XSOS-PB-λcbv-App1),
(XSOS-PB-λcbv-App2) to (Goal1), we get the goal:

R[env ρ[x 7→ 〈x,x x,ρ〉]] ` 〈x,x x,ρ〉 〈x,x x,ρ〉/S′′[div �] ⇓
co v/S′[div �] (Goal1′′)
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Abstract syntax (Σλcbv). (See Figure 4.6)
Auxiliary entities (Cλcbv). (See Figure 4.6)
Final configurations (Qλcbv). Rule specification (Dλcbv). (See Figure 4.6)

env ρ ` λx.e ⇓ 〈x,e,ρ〉 (XSOS-PB-λcbv-Lam)

e1 ⇓ e′1 e′1 e2 ⇓ e′

e1 e2 ⇓ e′
(XSOS-PB-λcbv-App1)

e2 ⇓ e′2 〈x,e,ρ ′〉 e′2 ⇓ e′

〈x,e,ρ ′〉 e2 ⇓ e′
(XSOS-PB-λcbv-App2)

env ρ ′[x 7→ v2] ` e ⇓ e′ env ρ ` 〈x,e′,ρ ′〉 v2 ⇓ e′′

env ρ ` 〈x,e,ρ ′〉 v2 ⇓ e′′
(XSOS-PB-λcbv-AppC)

env ρ ` 〈x,v,ρ ′〉 v2 ⇓ v
(XSOS-PB-λcbv-App)

x ∈ dom(ρ)

env ρ ` x ⇓ ρ(x)
(XSOS-PB-λcbv-Var)

Q(e,S)
R ` e/S ⇓ e/S

(XSOS-PB-Iter-Refl)

Figure 5.2: Abbreviated pretty-big-step XSOS rules for λcbv

Applying (XSOS-PB-λcbv-AppC), we get a guarded goal that matches the coinduction
hypothesis. The remaining goals follow by applying (XSOS-Div).

Proposition 5.1 provides evidence that the encoding of divergence in Figure 5.1 is
useful for making divergence distinguishable in pretty-big-step semantics. In the rest of
this chapter, we prove that it enables us to distinguish exactly the same set of programs
that we can prove diverge using small-step semantics.

5.2 Correspondence between converging and diverging
computations in refocused XSOS rules

Chapter 2 recalled different approaches to representing operational semantics, includ-
ing how to give semantics for diverging computations, referring in particular to Leroy
and Grall [LG09]. Here, we generalise and adapt Leroy and Grall’s proofs for proving
the correspondence between diverging small-step and pretty-big-step XSOS rules.
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rules

R ` e/S→ e′/S′ R ` e′/S′ →∗ e′′/S′′

R ` e/S→∗ e′′/S′′
(XSOS-Trans)

R ` e/S→∗ e/S
(XSOS-Refl)

R ` e/S→ e′/S′ R ` e′/S′
∞−→

R ` e/S
∞−→

(XSOS-InfClo)

Figure 5.3: The reflexive-transitive closure →∗ and the infinite closure ∞−→ of a small-
step XSOS transition relation→

5.2.1 Converging and diverging computations in small-step XSOS

The standard way of reasoning about divergence in small-step semantics is to define a
relation ∞−→ that contains the set of all programs with infinite sequences of reduction
steps for some transition relation→. Such a relation is given by the rule in Figure 5.3.

The relationship between ∞−→ and→∗ is summarised by the following Proposition.

Lemma 5.2 For any transition relation →, it holds that it either gets stuck (either by
going wrong, or by yielding a final configuration), or that it progresses indefinitely:(

∃e′ S′. R ` e/S→∗ e′/S′ ∧ R ` e′/S′ 6→
)
∨ R ` e/S

∞−→

Proof (classical). The proof is completely independent of the structure of rules for →,
and is analogous to the one given by Leroy and Grall [LG09, Lemma 10]: we first
show (∀e′ S′. R ` e/S →∗ e′/S′ =⇒ ∃e′′ S′′. R ` e′/S′ → e′′/S′′) =⇒ R ` e/S

∞−→ by guarded

coinduction. The goal follows by reasoning by the law of excluded middle on ∞−→ and
this fact. The full proof can be found in the Coq development accompanying this thesis:
http://cs.swansea.ac.uk/~cscbp/xtss.zip.

We want to prove that refocusing produces pretty-big-step XSOS relations that can
be used to prove divergence on a par with small-step XSOS relations. By Theorem 4.12,
it holds that:

Q(e′,S′) =⇒
(

R ` e/S→∗ e′/S′ ⇐⇒ R ` e/S ⇓ e′/S′

)
In this section we prove that:

R ` e/S[div �]
∞−→ ⇐⇒

(
∃e′ S′. R ` e/S[div �] ⇓

co e′/S′[div �]

)
5.2.2 Properties of coinductive interpretation

Section 2.5.2 recalled properties about the coinductive interpretation of pretty-big-step
rules for λcbv. The same properties generalise to the coinductive interpretation of arbi-
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trary extensible pretty-big-step XSOS with left-to-right order of evaluation with abrupt
termination (Definition 4.10) and modular divergence (Figure 5.1). These properties
are useful for relating the coinductive interpretation of the infinite closure of a small-
step relation and pretty-big-step rules with modular divergence.

The first property (Lemma 5.3) says that the set of derivations we can construct
using the inductive interpretation of pretty-big-step rules can also be constructed using
the coinductive interpretation.

Lemma 5.3 (Coinductive interpretation subsumes inductive interpretation) For any
relation ⇓ that is the refocused counterpart to a small-step relation→ with left-to-right
order of evaluation with abrupt termination, the following holds about its coinductive
interpretation ⇓co:

R ` e/S ⇓ e′/S′ =⇒

R ` e/S ⇓co e′/S′

Proof. Trivial, since ⇓co is the coinductive interpretation of ⇓.

Lemma 5.4 proves that a term diverges if it successfully coevaluates but fails to
evaluate.

Lemma 5.4 (Coevaluation without convergence implies divergence) For any relation
⇓ with left-to-right order of evaluation with abrupt termination, the following holds
about its coinductive interpretation ⇓co:

R ` e/S ⇓co e′/S′ =⇒

¬
(

R ` e/S ⇓ e′/S′

)
=⇒

R ` e/S ⇓co e′/S′[div �]

Proof (classical, sketch). The proof is by guarded coinduction on ⇓co. The cases follow
by reasoning by the law of excluded middle on ⇓. Cases follow either from a contra-
diction, or by guarded application of the coinduction hypothesis. The full proof is in
Appendix B.2.

A classical consequence of Lemma 5.4 is that coevaluation implies that a term either
diverges or terminates with a value.

Lemma 5.5 (Coevaluation implies convergence or divergence) For any relation⇒ that
is the refocused counterpart to a small-step relation→ with left-to-right order of evalu-
ation with abrupt termination, the following holds about its coinductive interpretation
⇓co:

R ` e/S ⇓co e′/S′ =⇒

R ` e/S ⇓ e′/S′ ∨ R ` e/S ⇓co e′/S′[div �]

Proof (classical). The goal follows by reasoning by the law of excluded middle on R `
e/S ⇓ e′/S′ and Lemma 5.4.
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Case (P) Case analysis on the law of excluded middle gives:

R ` e/S ⇓ e′/S′ (H1)

This proves the left part of the disjunctive goal.

Case (¬P) The goal and case analysis on the law of excluded middle gives:

R ` e/S ⇓
co e′/S′ (H1)

¬(R ` e/S ⇓ e′/S′) (H2)

Applying Lemma 5.4 to these hypotheses proves the right part of the disjunctive goal.

Using these properties, we can prove that the set of divergent programs admitted by
the coinductive interpretation of refocused pretty-big-step rules coincides with the set
of divergent programs admitted by the infinite closure of the corresponding small-step
transition relation.

5.2.3 Soundness

First, we prove that the set of divergent programs admitted by the coinductive interpre-
tation of refocused pretty-big-step rules with modular abrupt termination is a subset
of the set of divergent programs admitted by the infinite closure of the corresponding
small-step relation.

Lemma 5.6 (Coinductive refocusing is sound) For any relation ⇓ that is the refocused
counterpart to a small-step relation→with left-to-right order of evaluation with abrupt
termination, the following holds about its coinductive interpretation ⇓co:

R ` e/S[div �] ⇓co e′/S′[div �] =⇒

R ` e/S
∞−→

Proof. The proof is by guarded coinduction, using the goal as coinduction hypothesis.
By Lemma 5.7, we get the hypotheses:

R ` e/S[div �] −→ e′′/S′′[div �] (H1)

R ` e′′/S′′ ⇓
co e′/S′[div �] (H2)

The goal:
R ` e/S

∞−→ (Goal)

follows by application of (XSOS-InfClo), (H1), a guarded application of the coinduction
hypothesis, and (H2).
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Lemma 5.7 (Small-step preserves coinductive refocusing) For any relation ⇓ that is the
refocused counterpart to a small-step relation → with left-to-right order of evaluation
with abrupt termination, the following holds about its coinductive interpretation ⇓co:

R ` e/S[div �] ⇓co e′/S′[div �] =⇒

∃e′′ S′′. R ` e/S[div �] −→ e′′/S′′ ∧ R ` e′′/S′′ ⇓
co e′/S′[div �]

Proof (classical, sketch). The proof is by structural induction on e, invoking the law
of the excluded middle on instantiations of Lemma 5.5, and Theorem 4.12. See Ap-
pendix B.2 for the full proof.

5.2.4 Completeness

Second, we prove the other direction; i.e., that the set of divergent programs admitted
by the infinite closure of a small-step transition relation is a subset of the set of diver-
gent programs admitted by the coinductive interpretation of corresponding refocused
pretty-big-step rules with modular abrupt termination.

Lemma 5.8 (Coinductive refocusing is complete) For any relation ⇓ that is the refo-
cused counterpart to a small-step relation→ with left-to-right order of evaluation with
abrupt termination, the following holds about its coinductive interpretation ⇓co:

R ` e/S
∞−→ =⇒ ∀e′ S′. R ` e/S ⇓

co e′/S′[div �]

Proof (classical, sketch). The proof is by guarded coinduction, using the goal as coin-
duction hypothesis, and by inversion on the first premise, using classical reasoning
for case analysis on whether a term diverges or not, Theorem 4.12, and congruence
lemmas of similar structure to Lemma 5.9. See Appendix B.2 for the full proof.

Lemma 5.9 (Congruence of infinite closure) For any small-step relation → with left-
to-right order of evaluation with abrupt termination and with a rule that matches the
scheme:

∀ei . . .en S S′.

¬Q(ei,S)
R′ ` ei/S→ e′i/S′

R ` f (v1, . . . ,vi−1,ei,ei+1, . . . ,en, . . .)/S→
f (v1, . . . ,vi−1,e′i,ei+1, . . . ,en, . . .)/S′

(XRS- f i)

For each such rule, it holds that:

R ` f (v1, . . . ,vn,ei,ei+1, . . . ,en, . . .)/S
∞−→ =⇒

¬(∃e′ S′. R′ ` ei/S −→∗ e′/S′ ∧ Q(e′,S′) ∧
R ` f (v1, . . . ,vn,e′,ei+1, . . . ,en, . . .)/S′

∞−→) =⇒

R′ ` ei/S
∞−→
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Proof (sketch). The proof is by guarded coinduction and inversion on the first premise.
See Appendix B.2 for the full proof.

The proof of completeness given by Lemmas 5.9 and 5.8 differs from the proof
method followed by Leroy and Grall [LG09, Lemma 10 and Theorem 11]: Leroy and
Grall’s proof is based on a semantics with a deterministic transition relation; in contrast,
Definitions 4.1 and 4.11 do not describe deterministic relations; instead, they describe
relations that satisfy what is known as unique decomposition in reduction semantics
[XSA01, DN04]. Intuitively, non-deterministic choices between rules can only ever
occur in the leaves of derivation trees for such semantics.

5.2.5 Correctness of coinductive refocusing with modular divergence

Lemma 5.6 and 5.8 show that refocusing produces pretty-big-step rules which support
reasoning about divergence on a par with small-step semantics. Theorem 5.10 sum-
marises the result.

Theorem 5.10 For any relation ⇓ that is the refocused counterpart to a small-step
relation→ with left-to-right order of evaluation with abrupt termination, the following
holds about its coinductive interpretation ⇓co:

R ` e/S[div �]
∞−→ ⇐⇒ R ` e/S[div �] ⇓co e′/S′[div �]

Proof. The theorem is a direct consequence of Lemma 5.6 and 5.8.

This shows that it is possible to augment extensible big-step specifications to express
and reason about diverging computations without modifying or introducing new rules
for existing constructs.

5.3 Assessment and related work

We have shown how our approach to encoding modular abrupt termination is useful for
expressing and reasoning about diverging computations. Chapter 2 recalled traditional
approaches to semantic specifications and a few state-of-the-art approaches. Several
alternative lines of work exist for reasoning about divergence.

5.3.1 Refocused rules vs. pretty-big-step semantics

One of the main differences between the pretty-big-step rules considered in this thesis
and those of Charguéraud [Cha13] is in how we represent abrupt termination and
divergence. In order to distinguish final configurations, we introduced a Q predicate
in Section 3. Using this predicate, XSOS only match on non-final configurations. A
consequence of this is that pretty-big-step XSOS rules ensure productivity of rules,
similarly to how semantic expressions ensure productivity of Charguéraud’s [Cha13]
original formulation of pretty-big-step rules.
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5.3.2 Trace-based semantics

The encoding of divergence considered here suffices to show that a term diverges, but
provides no fine-grained information about potential observable outputs of diverging
computations. Trace-based semantics do.

It is straightforward to record (possibly-infinite) traces using small-step semantics.
For example, the following closure of a small-step XSOS transition relation implements
the sequence of all intermediate states of a program:

R ` e/S→ e/S′ R ` e/S′ →T t

R ` e/S→T S :: t
(XSOS-Trace-Trans)

R ` e/S→T 〈S〉 (XSOS-Trace-Refl)

It is equally possible to give big-step semantics that record such traces.
Leroy and Grall [LG09] proposed a version of trace-based big-step semantics, where

traces are either finite lists specified by an inductive data type, or infinite streams,
specified by a coinductive datatype. Using these datatypes, Leroy and Grall define two
separate big-step relations: one relation that produces finite lists as traces, and one
that produces infinite streams. Their rules suffer from a similar duplication problem
as traditional big-step rules, and rely on classical reasoning similarly to the proofs
considered in this chapter in order to reason about possibly-diverging computations.

Nakata and Uustalu [NU09] propose an alternative means of giving trace-based se-
mantics, inspired by how traces are accumulated using the partiality monad [Cap05].
Following their approach, the coinductive interpretation of a set of rules subsumes the
set of all finite and infinite traces, where a trace is a co-list, i.e., a possibly infinite list.
Unlike the semantics of Leroy and Grall, Nakata and Uustalu’s rules do not suffer from
the duplication problem, and does not rely on classical reasoning. The language in
which Nakata and Uustalu showcase their rules is of imperative nature, but Danielsson
[Dan12] shows how to work with applicative semantics by means of functional opera-
tional semantics using the partiality monad, which closely corresponds to trace-based
coinductive big-step semantics.

Unlike the approaches to representing and reasoning about possible-divergence
considered in this chapter, Nakata and Uustalu’s trace-based coinductive big-step sup-
port constructive reasoning in order to reason about and relate possibly-diverging pro-
grams and semantics. However, most proof assistants like Coq or Agda have somewhat
limited support for coinductive reasoning, which is more restrictive than inductive rea-
soning. Furthermore, while the extra structure that trace-based semantics provides is
useful for many applications, there are also applications where all we are concerned
with is whether a program diverges or terminates with a final configuration, such as
type systems (see, e.g., Chapters 6, 7, and 8 of this thesis).

Charguéraud [Cha13] shows how pretty-big-step rules scale to express trace-based
semantics too. His semantics is closer in spirit to Leroy and Grall’s than Nakata and
Uustalu, in that finite and infinite streams are distinguished inductive and coinductive
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datatypes. However, Charguéraud’s trace-based pretty-big-step rules avoid the dupli-
cation problem. We expect that it is straightforward to adapt trace-based semantics to
XSOS. This could conceivably be done by a monad-like lifting of pretty-big-step rules.
Alternatively, trace-based rules could be derived by refocusing the trace-based closure
of small-step rules (XSOS-Trace-Trans) and (XSOS-Trace-Refl) in relation to a set of
small-step rules to obtain big-step trace-based semantics. We leave further exploration
of this expectation to future work.

This chapter has extends the state-of-the-art in representing divergence in three
ways:

• it provides a modular way of extending pretty-big-step semantics with simple
divergence without abort rules;

• it provides a generic proof of correspondence for pretty-big-step and small-step
semantics; and

• it provides a generalised proof method for relating a small-step semantics to a
big-step semantics using guarded coinduction in a way that does not rely on the
determinism of the small-step relation.
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Section 2.9.4 recalled how Cousot’s [Cou97] types as abstract interpretations provide
a means of proving type soundness using big-step semantics with an explicit notion
of “going wrong”. This chapter shows that the approach also works for proving type
soundness using natural semantics without artificial wrong transitions, and how to
implement the approach in a proof assistant like Coq.

The contents of this chapter is based on joint work [BPMT15] with Paolo Torrini
and Peter D. Mosses.

6.1 Monotype abstraction of big-step λcbv

We consider how to abstract λcbv using the natural semantics from Figure 2.27 without
artificial wrong transitions.

Types and denotations. As in Section 2.9, we consider the simple types given by the
grammar:

Type 3 T ::= nat | T _ T

Type environments and typings are also defined as before:

Γ ∈ TypeEnv, Var fin−→ Type

Typing, TypeEnv×Type

T,℘(Typing)
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6. Big-Step Type Soundness using Types as Abstract Interpretations

We define the denotational meaning of expressions in terms of the relation given
by the inductive rules in Figure 2.27 without explicit rules for going wrong:

DJ•K ∈ Expr→ D

DJeK, Λρ.{v | ρ ` e⇒ v}

Here, D , Env→℘(Val). The denotation function above differs from the denotation
function recalled in Section 2.9.4: the denotation function defined above returns the
empty set if a program gets stuck or diverges. For example, the denotation of DJxK( /0)
(i.e., a free variable) gives the empty set. In contrast, since we were using a semantics
with an explicit notion of going wrong, the sets returned by the denotations function
that we adapted from Cousot in Section 2.9.4 is guaranteed to be non-empty since the
union of⇒ and ∞

=⇒ from Section 2.9.4 is total for expressions and environments.

Abstraction function. Section 2.9.4 followed Cousot and used a concretisation func-
tion that gives meanings to types by relating sets of typings to sets of denotations.
Since the concretisation and abstraction functions uniquely define one another, we
might equally well use an abstraction function. Here, we opt for formalising the ab-
straction function, which relates denotations to their type.1 The abstraction function
we want is one that returns the set of all typings that can be assigned to the denotation
of a given program. Figure 6.1 defines such an abstraction function.

Like the concretisation function we adapted from Cousot [Cou97, p. 317] in Fig-
ure 2.58, the abstraction function assigns typings to denotations in a conjunctive man-
ner; i.e., the set of typings one can assign to a set of denotations D are valid typings
for all denotations d ∈ D. Recalling that denotation functions return the empty set for
faulty programs, it follows that, if a set of denotations D contains a faulty program with
denotation d, it is not assigned a type, since αD(d) = /0.

Using the abstraction function, we can establish the following Galois connection,
where γ is uniquely defined by α:

(T,⊇)−−→←−−
γ

α

(℘(D),⊆)

The Galois connection follows from the same line of reasoning as in Section 2.9.4.

Type soundness. Figure 6.2 recalls the typing relation for λcbv. Using that relation,
we define the following typing function which returns a set of typings for a given
expression:

TJeK, {(Γ,T ) | Γ ` e : T}
1Our motivation for opting for abstraction over concretisation is didactic: the definition of the ab-

straction function reads similarly to a traditional typing relation. A concretisation function captures the
same meaning, but reads in the opposite direction.
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αR ∈ Env→℘(TypeEnv)

αR(ρ), {Γ | ∀x ∈ dom(ρ). x ∈ dom(Γ) ∧ Γ(x) ∈ αV (ρ(x))}
αV ∈ Val→℘(Type)

αV (n), {nat}

αV (〈x,e,ρ〉),
{

T1 _ T2

∣∣∣∣∀v1. T1 ∈ αV (v1) =⇒
∃v2. v2 ∈ DJeK(ρ[x 7→ v1]) ∧ T2 ∈ αV (v2)

}
αD ∈ D→ T

αD(d), {(Γ,T ) | ∀ρ. Γ ∈ αR(ρ) =⇒ ∃v. v ∈ d(ρ) ∧ T ∈ αV (v)}
α ∈℘(D)→ T

α(D),
⋂

d∈D

αD(d) α( /0), T

Figure 6.1: Abstraction function for λcbv

Γ ` e1 : nat Γ ` e2 : nat
Γ ` plus(e1,e2) : nat

(T-Plus)

Γ ` num(n) : nat
(T-Nat)

Γ[x 7→ T1] ` e : T2

Γ ` λx.e : T1 _ T2
(T-Fun)

Γ ` e1 : T1 _ T2 Γ ` e2 : T1

Γ ` e1 e2 : T2
(T-App)

x ∈ dom(Γ)

Γ ` x : Γ(x)
(T-Var)

Figure 6.2: Typing rules for λcbv
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Proving that this typing relation safely approximates the set of all typings for well-typed
programs amounts to proving type soundness; i.e.:

TJeK⊆ α({DJeK})
⇐⇒ TJeK⊆ αD(DJeK) (by def. of α)

⇐⇒ (Γ,T ) ∈ TJeK =⇒ ∀ρ. Γ ∈ αR(ρ) =⇒
∃v. v ∈ DJeK(ρ) ∧ T ∈ αV (v)

(by def. of αD and ⊆)

⇐⇒ Γ ` e : T =⇒ ∀ρ. Γ ∈ αR(ρ) =⇒
∃v. ρ ` e⇒ v ∧ T ∈ αV (v)

(by def. of T and D)

Proposition 6.1 (Type soundness)

Γ ` e : T =⇒ ∀ρ. Γ ∈ αR(ρ) =⇒
∃v. ρ ` e⇒ v ∧ T ∈ αV (v)

Proof. By structural induction on the typing relation. The interesting cases are those
for λ -abstractions and application.

Case (T-Fun) Unfolding the abstraction function in the conclusion, we are required to
show that the body of the λ -abstraction when applied to a value of type T1 returns
a value of T2. This fact follows by invoking Lemma 6.2 (see below) to show that
Γ[x 7→ T1] ∈ αR(ρ[x 7→ v1]) for T1 ∈ αV (v1), and by the induction hypothesis.

Case (T-App) The goal follows straightforwardly from the induction hypothesis. The
crucial step is proving that the body of the abstraction evaluates to a value of the right
type. This follows from the induction hypothesis for the first premise, which gives us
T1 _ T2 ∈ αV (〈x,e,ρ〉), which, by definition of αV , gives us:

∀v1. T1 ∈ αV (v1) =⇒ ∃v2. ρ[x 7→ v1] ` e⇒ v2 ∧ T2 ∈ αV (v2)

which is exactly what we need in order to complete the proof.

Lemma 6.2 (Abstraction preserves environment updates)

Γ ∈ αR(ρ) =⇒ T ∈ αV (v) =⇒ Γ[x 7→ T ] ∈ αR(ρ[x 7→ v])

Proof. Immediate from the definition of αR.

This shows that abstract interpretation allows us to prove strong type soundness
using big-step relations without artificial “wrong” transitions. The key is the precision
afforded by the abstraction function for closures: the abstraction function gives us the
information that is lacking from the induction hypothesis, namely that closures do not
get stuck.
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A corollary of the proof of strong type soundness based on inductive natural se-
mantics is that the λ -calculus is strongly normalising, i.e., all computations terminate.
While this is well-known [Bar92, Tai67, Pie02]. Here, the fact follows naturally from
the type soundness proof itself.

Corollary 6.3 The simply-typed λ -calculus is strongly normalising.

Proof. The corollary is a straightforward consequence of Proposition 6.1, which es-
tablishes that, for any λcbv program that type-checks, there exists a finite derivation
which produces a value of the right type. Since λcbv is deterministic, it follows that all
derivations that type-check are finite.

6.2 Well-foundedness and proof mechanisation in Coq

The proof of Proposition 6.1 follows by induction and from the definition of our abstrac-
tion functions. The abstraction functions are defined as a set computed by recursive
equations. When dealing with self-referential set-theoretic functions, we must take
care that they do not give rise to paradoxes that would allow us to prove anything. For
this reason, most proof assistants have rigorous checks in place in order to ensure that
user-defined relations and functions preserves the consistency of the underlying logic.
In this section we consider how to work with abstraction functions in Coq.

First attempt: relational encoding. Looking at the abstraction function for values,
αV , it is not immediately obvious that the function is well-founded. Indeed, a relational
encoding of αV is rejected by Coq2. We may attempt to define it for the following
encoding of the λcbv language:

Inductive Expr := V (v:Val)

| PLUS (e1 e2:Expr)

| VAR (x:nat)

| LAM (x:nat) (e:Expr)

| APP (e1 e2:Expr)

with Val := NAT (n:nat)

| CLO (x:nat) (e:Expr) (r:Map Val).

Inductive type := N

| FUN (T1 T2:type).

Now, we can attempt to define the following relation, ‘In AlphaV’, with two rules,
‘IA NAT’ and ‘IA CLO’:

2Version 8.4pl6
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6. Big-Step Type Soundness using Types as Abstract Interpretations

Inductive In_AlphaV : type -> Val -> Prop :=

| IA_NAT :

forall n,

In_AlphaV N (NAT n)

| IA_CLO :

forall T1 T2 x e r v2,

(In_AlphaV T2 v2 ->

(exists v1, Eval (map_update r x v2) e v1 /\

In_AlphaV T1 v1)) ->

In_AlphaV (FUN T1 T2) (CLO x e r).

Here, Eval is the Coq counterpart to the relation given by the natural semantics for
λcbv (Figure 2.27). But when we try to load this definition in Coq, we get the error
message:

Error: Non strictly positive occurrence of "In_AlphaV" in

"forall (T1 T2 : type) (x : nat) (e : Expr) (r : Map) (v2 : Val),

(In_AlphaV T2 v2 ->

exists v1:Val, Eval (map_update r x v2) e v1 /\ In_AlphaV T1 v1) ->

In_AlphaV (FUN T1 T2) (CLO x e r)".

The strict-positivity requirement [CPM90] is in place to rule out a class of non-well-
founded relations that would make the logic of the underlying proof assistants incon-
sistent. Unfortunately, the requirement also rules out certain relations that do not give
rise to inconsistencies. Here, the non-strictly-positive occurrence of In AlphaV is the
occurrence to the left of the arrow in the premise for the constructor IA CLO. In order
to work with the abstraction function in Coq we resort to a functional encoding of the
abstraction function.

Functional encoding. Recursive function in Coq are given as Fixpoints that must be
guaranteed to always terminate. Noticing that each recursive call of αV is on a type
term that is strictly smaller than the input type term, we can express the function such
that it is accepted by Coq’s termination checker as structurally decreasing on the input
type term, T:

Fixpoint in_alphaV (T:type) (v:Val) : Prop :=

match v with

| NAT n => T = N

| CLO x e r =>

match T with

| FUN T2 T1 =>

forall v2,

in_alphaV T2 v2 ->

exists v1, Eval (map_update r x v2) e v1 /\

in_alphaV T1 v1
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6.3. Polytype abstraction

| _ => False

end

end.

This function generates a proposition corresponding to the set of all pairs (T,v) for
which it holds that T ∈ αV (v).

It is straightforward to implement the abstraction function for environments αR

from Figure 6.1 in Coq using a functional encoding. The Coq formalisation accompa-
nying this thesis3 contains the full formalisation, as well as Coq counterpart to the type
soundness proof for λcbv that Proposition 6.1 outlines.

6.3 Polytype abstraction

Cousot [Cou97] shows how to give concretisation functions for Hindley-Milner-Damas
polymorphism [Hin69, Mil78, Dam84], the typing discipline used in Standard ML.
Whereas Cousot uses a concretisation function and a denotational semantics with an
explicit notion of going wrong, this section defines an abstraction function and uses
this to define type soundness of Hindley-Milner-Damas polymorphism using a natural
semantics without an explicit notion of going wrong.

Extension with let. Hindley-Milner-Damas polymorphism is also known as let-poly-
morphism, since polymorphic quantification is restricted to let expressions. We aug-
ment the natural semantics for λcbv (Section 2.4.4) by a let construct:

ExprNS 3 e ::= . . . | let x = e in e

ρ ` e2⇒ v2 ρ[x 7→ v2] ` e1⇒ v1

ρ ` let x = e2 in e1⇒ v1

Notion of typing. Traditionally, Hindley-Milner types [Hin69, Mil78, WF94] use syn-
tactic substitution and unification. Here, we follow Cousot [Cou97] and define poly-
types as sets of monotypes:

Ξ ∈ PolyTypeEnv,Var fin−→℘(Type)

Our notion of typing becomes:

(Ξ,T ) ∈ P, PolyTypeEnv×Type

Abstraction function. Figure 6.3 defines abstraction functions for polytype environ-
ments. The only differences (apart from naming) are in the definitions of αHM

R and αHM
D ,

which now refer to polytype environments.

3http://cs.swansea.ac.uk/~cscbp/xtss.zip
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α
HM
R ∈ Env→℘(PolyTypeEnv)

α
HM
R (ρ),

{
Ξ

∣∣∣∣∀x ∈ dom(ρ).
x ∈ dom(Ξ) ∧ Ξ(x) 6= /0 ∧ Ξ(x)⊆ αHM

V (ρ(x))

}
α

HM
V ∈ Val→℘(Type)

α
HM
V (n), {nat}

α
HM
V (〈x,e,ρ〉),

{
T1 _ T2

∣∣∣∣∀v1. T1 ∈ αHM
V (v1) =⇒

∃v2. v2 ∈ DJeK(ρ[x 7→ v1]) ∧ T2 ∈ αHM
V (v2)

}
α

HM
D ∈ D→ P

α
HM
D (d), {(Ξ,T ) | ∀ρ. Ξ ∈ α

HM
R (ρ) =⇒ ∃v. v ∈ d(ρ) ∧ T ∈ α

HM
V (v)}

α
HM ∈℘(D)→ P

α
HM(D),

⋂
d∈D

α
HM
D (d) α

HM( /0), P

Figure 6.3: Abstraction function for λcbv with Hindley-Milner-Damas polymorphism

Type soundness. Figure 6.4 defines a typing relation for Hindley-Milner-Damas poly-
morphism. The main difference from the monotype system in Figure 2.55 is the rule for
let (P-Let), which infers a non-empty set of monotypes P (i.e., a polytype) that contains
valid types for e2. The rule binds x to the polytype P when inferring the type of e1.
Here, it is crucial that the polytype P is non-empty: if we were to permit it to be empty,
we would be able to infer the types of some let expressions that contain stuck-terms,
such as:

let(x,plus(num(1),(λy.y)),num(2))

Proposition 6.4 (Polytyping is sound for λcbv with let expressions)

Γ ` e : T =⇒ ∀ρ. Γ ∈ αR(ρ) =⇒ ∃v. ρ ` e⇒ v ∧ T ∈ αV (v)

Proof. The proof follows the same line of reasoning as Proposition 6.1, except that
Lemma 6.5 is used instead of Lemma 6.2, and with the addition of the new case for
let.

Case (P-Let) The induction hypotheses are:

∀T ∈ P. ∀ρ. Ξ ∈ α
HM
R (ρ) =⇒ ∃v1. ρ ` e1⇒ v1 ∧ T1 ∈ α

HM
V (v1) (IH1)

∀ρ. Ξ[x 7→ P] ∈ αR(ρ) =⇒ ∃v2. ρ ` e2⇒ v2 ∧ T2 ∈ αV (v2) (IH2)

The goal is to find a value v1 that e1 evaluates to, and which is typed by all T ∈ P.
If we can show that such a value exists, then the goal follows straightforwardly from
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6.3. Polytype abstraction

Ξ ` e1 : nat Ξ ` e2 : nat
Ξ ` plus(e1,e2) : nat

(P-Plus)

Ξ ` n : nat
(P-Nat)

T ∈ Ξ(x)
Ξ ` x : T

(P-Var)

Ξ[x 7→ {T2}] ` e : T1

Ξ ` λx.e : T2 _ T1
(P-Fun)

Ξ ` e1 : T2 _ T1 Ξ ` e2 : T2

Ξ ` e1 e2 : T1
(P-App)

P 6= /0 (∀T ∈ P. Ξ ` e2 : T ) Ξ[x 7→ P] ` e1 : T1

Ξ ` let x = e2 in e1 : T1
(P-Let)

Figure 6.4: Typing rules for λcbv with Hindley-Milner-Damas polymorphism

the induction hypotheses and Lemma 6.5. The existence of such a value is proven as
follows:

• Choose any T1 ∈ P.

• From (IH1), we get ρ ` e1⇒ v1 such that T1 ∈ αV (v1).

• Observe that v1 must be typed by any T ∈ P: for any T ∈ P, we can use (IH1) to
obtain a proof of ρ ` e1⇒ v′1 such that T ∈ αV (v′1); but since ⇒ is deterministic,
we get T ∈ αV (v1).

The rest of the case follows from the induction hypotheses, Lemma 6.5, and this fact.

Lemma 6.5 (Abstraction preserves environment updates)

Ξ ∈ α
HM
R (ρ) =⇒ P 6= /0 =⇒ (∀T ∈ P. T ∈ α

HM
V (v)) =⇒ Ξ[x 7→ P] ∈ α

HM
R (ρ[x 7→ v])

Proof. Immediate from the definition of αHM
R .

As with the proof of correctness for the simple type system considered in Sec-
tion 6.1, strong normalisation for λ -calculus with Hindley-Milner-Damas polymor-
phism follows as a straightforward corollary of the type soundness in Proposition 6.4.

Corollary 6.6 λ -calculus with Hindley-Milner-Damas polymorphism is strongly nor-
malising.
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Proof. The corollary is a straightforward consequence of Proposition 6.4, which es-
tablishes that, for any λcbv program that type-checks, there exists a finite derivation
which produces a value of the right type. Since λcbv is deterministic, it follows that all
derivations that type-check are finite.

6.4 Assessment and related work

Types as abstract interpretations has been considered by several authors. Most of these
use denotational semantics with explicit notions of going wrong [Cou97, MJ86, CF93,
Sim14, Gal14]. The close relationship between denotational semantics and natural
semantics makes it straightforward to apply in the context of this framework; indeed,
Monsuez [Mon95] studies types as abstract interpretations for System F [Gir72, Rey74]
using natural semantics with an explicit notion of going wrong.4

The main contribution of this chapter consists in highlighting the fact that abstract
interpretation does not require us to use a semantics with an explicit notion of going
wrong: it suffices to have a sufficiently strong relation between types and their mean-
ing. This follows straightforwardly by viewing types as abstract interpretations follow-
ing Cousot [Cou97], and as investigated by others. Part of the reason why this fact
has received so little attention may be that that adding the notion of “wrong” to deno-
tational semantics is straightforward to express by means of pattern-matching [CF93,
p. 120]. This is more challenging in natural semantics, where divergence and going
wrong is typically indistinguishable, in the sense that neither diverging nor wrong pro-
grams are contained in the defined relation. This chapter shows that this distinction
is not inherently necessary for type disciplines that ensure strong normalisation. In
the next chapter, we consider how to extend the approach to an ML-style type system
where strong normalisation is not guaranteed.

Ancona [Anc12] also provides a solution to proving type soundness using a big-step
semantics without an explicit notion of wrong. Unlike us, Ancona studies a Java-like
language. In order to prove its type soundness he gives a coinductive natural seman-
tics without an explicit notion of going wrong. His approach appears to be related to
the types as abstract interpretations approach, and makes the same observation that
this chapter emphasises, namely that a sufficiently precise formalisation of the rela-
tionship between typings and concrete derivations enables proofs of type soundness
without an explicit notion of going wrong. Although Ancona does not explicitly relate
his approach to abstract interpretation, the crucial part of his proof appears to rely on
a concretisation relation in the style of abstract interpretation.

It seems there is a close relationship between abstraction functions and logical re-
lations [Tai67, Plo73, Pie02]. Ahmed [Ahm04] uses logical relations to give meaning
to reference types and to derive typing rules for logical relations, in a very similar spirit

4Although Monsuez’ natural semantics for call-by-value λ -calculus in [Mon95, Figure 1] does not have
an explicit notion of going wrong, he adds explicit errors when defining his abstraction function [Mon95,
Section 5.1].
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to the types as abstract interpretations approach due to Cousot. In contrast to Cousot’s
approach and the approach taken here, Ahmed’s proofs rely on dynamic semantics
defined using a small-step transition relation.

Chapman [Cha09] also uses logical relations to prove strong normalisation of
(dependently-typed) λ -calculus. His semantics is defined using typed syntax, whereby
the semantics only captures well-typed terms. In contrast, the λcbv in this thesis is un-
typed, but realises several type models, including the monotyped and Hindley-Milner-
Damas polytyped type systems in Sections 6.1 and 6.3 of this thesis.5

5One could say that Chapman’s semantics uses Church-typing whereas our semantics uses Curry-
typing (see, e.g., [Hin97] for a good introduction and discussion of this distinction).
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Contents
7.1 Abstracting extensible specifications . . . . . . . . . . . . . . . . . . 148

7.2 Extensible type soundness for λcbv+ref . . . . . . . . . . . . . . . . . 153

7.3 Assessment and related work . . . . . . . . . . . . . . . . . . . . . . 162

Types as abstract interpretations is useful for proving type soundness using big-step se-
mantics by avoiding the tedium of adding explicit error rules. This addresses a concern
with big-step type soundness proofs. Another concern with big-step type soundness is
summarised by Felleisen and Wright [WF94] who, based on a survey of big-step type
soundness proofs in the literature, conclude:

A seemingly minor extension to a language may require a complete re-
structuring of its denotational or structural operational semantics, and may
therefore require a completely new approach to re-establish soundness.

Their survey comprises several type soundness proofs from the literature concerning
type inference for Hindley-Milner-Damas polymorphism with references. In this chap-
ter we consider how types as abstract interpretations can be used to prove type sound-
ness for such type systems.

This chapter provides two contributions over the previous chapter: firstly, we adapt
the technique for type soundness from previous chapter to XSOS. Secondly, the lan-
guage considered in this chapter does not satisfy strong normalisation. This poses
some challenges for the technique: the abstraction function now needs to describe the
types of both diverging and converging computations; and it is no longer obvious that
the abstraction function is well-founded. We show how to adapt the technique to this
setting and discuss these challenges. Our adaptation of the technique does not change
the central arguments of the type soundness proof considerably.
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Abstract syntax (ΣHM
λcbv

).

Type 3 T ::= nat | T _ T

ExprNS 3 e ::= plus(e,e) | num(n) | λx.e | e e | x
ValNS 3 v ::= n | 〈x,e,ρ〉

x ∈ Var , {x,y, . . .}

Ξ ∈ PolyTypeEnv, Var fin−→℘(Type)

Auxiliary entities (CHM
λcbv

).

CHM
λcbv
,
{

env : CDISCRETE(PolyTypeEnv)
}

Final configurations. (None required)
Rule specification.

e1 : nat e2 : nat
plus(e1,e2) : nat

(XP-Plus)

n : nat (XP-Nat)

T ∈ Ξ(x)
env Ξ ` x : T

(XP-Var)

env Ξ[x 7→ {T2}] ` e : T1

env Ξ ` λx.e : T2 _ T1
(XP-Fun)

e1 : T2 _ T1 e2 : T2
e1 e2 : T1

(XP-App)

Figure 7.1: Abbreviated XSOS typing rules for λcbv

7.1 Abstracting extensible specifications

We consider how to apply the types as abstract interpretations approach to a dynamic
semantics of λcbv, and prove the type soundness of an extensible type system specifi-
cation, specified using XSOS. For extensible type system specifications we restrict our
attention to judgments of the form G ` e : T , such that G is an indexed product of
read-only entities, and T is a type.

Figure 7.1 summarises an extensible specification of the syntax and typing rules for
λcbv from Figure 6.4, with the exception of the specification of let, which is specified
in Figure 7.2.1

1We specify let separately in anticipation of the future extension of our language with ML-style
references which requires us to use different typing rules for let.
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7.1. Abstracting extensible specifications

Abstract syntax (ΣHM
let).

T ∈ Type

ExprNS 3 e ::= let x = e in e

v ∈ ValNS

x ∈ Var

Ξ ∈ PolyTypeEnv, Var fin−→℘(Type)

Auxiliary entities (CHM
let).

CHM
let ,

{
env : CDISCRETE(PolyTypeEnv)

}
Final configurations. (None required)
Rule specification.

P 6= /0 (∀T ∈ P. env Ξ ` e2 : T ) env Ξ[x 7→ P] ` e1 : T1

env Ξ ` let x = e2 in e1 : T1
(XP-Let)

Figure 7.2: Extensible typing rule for let with Hindley-Milner-Damas polymorphism

Given a set of extensible typing rules and a set of extensible pretty-big-step XSOS
rules for λcbv (Figure 5.2 on page 126 with let-expressions given in Figure 7.3 on page
150), we investigate whether we can exploit their extensibility in big-step type sound-
ness proofs using types as abstract interpretations. We start our investigation by con-
sidering how to specify the abstraction function for relating typings and denotations.

Denotations using XSOS. The last chapter gave abstraction functions for λcbv based
on a notion of denotation that only contained the inductive interpretation of the eval-
uation relation. If we want an abstraction function that is extensible to type disciplines
that may not ensure strong normalisation, we should include diverging computations
in denotations.2 Here, we consider the well-known extension of the Hindley-Milner-
Damas typing system with references, which is known to be a typing discipline that
does not satisfy the strong normalisation property.3

Figure 7.4 gives a denotation function for an XSOS relation using its inductive (⇓)
and coinductive interpretation (⇓co). Its signature distinguishes two sets of objects:

2This is assuming that we are interested in extensions that produce typing disciplines that do not
ensure strong normalisation. If we were to restrict our attention to typing disciplines that do ensure
strong termination, the kinds of denotations and abstraction considered in the previous chapter would
provide a useful guiding principle for investigating type systems that satisfy this restriction.

3For example, we can define recursive and diverging functions using “Landin’s knot” – a folklore term
used to describe recursion using the store.
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7. Type Inference for References using Types as Abstract Interpretations

Abstract syntax (Σlet).

Expr 3 e ::= let x = e in e

v ∈ ValNS

x ∈ Var

σ ∈ Env, Var fin−→ ValNS

Auxiliary entities (Clet).

Clet , {(env,CDISCRETE(Env))}

Terminal configurations. (None required)
Rule specification.

e1 ⇓ e′1 let x = e′1in e2 ⇓ e′

let x = e1 in e2 ⇓ e′
(XSOS-PB-Let1)

env ρ[x 7→ v1] ` e2 ⇓ e′2 env ρ ` let x = v1in e′2 ⇓ e′

env ρ ` let x = v1 in e2 ⇓ e′
(XSOS-PB-Let2)

let x = v1 in v2 ⇓ v2
(XSOS-PB-Let)

Figure 7.3: Abbreviated pretty-big-step XSOS rules for let

DXJ•K ∈ Expr→ OR→ OS→℘(Val⊥×OS)

DXJeK= ΛR. ΛS.
{
(o,S′)

∣∣ R ` e/S ⇓ o/S′
}
∪{

(⊥,S′[div �])
∣∣ (∀v S′. R ` e/S ⇓

co v/S′[div �])
}

Figure 7.4: Extensible denotation function DXJ•K

OR is the subset of objects in the underlying product category ranged over by R, and
similarly OS are the objects ranged over by S.

Abstraction function. In contrast to the semantics for λcbv that we considered in the
previous chapter, the XSOS rules for λcbv thread stateful auxiliary entities ranged over
by S through judgments in rules. They also propagate an indexed product of entities
ranged over by R between the source and premises in rules.

The value produced by a function may depend on the auxiliary entities R and S,
and hence the abstraction function for values must depend on these. In order to re-
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7.1. Abstracting extensible specifications

flect this dependency, we could parameterise the abstraction function by these entities.
Parameterising the abstraction function by the auxiliary entities would make the value
abstraction function have a signature like:

α
XHM
V ∈ O→ ValNS→ Type

where O ranges over all objects in the underlying product category. But when entities
in O vary, the outcomes resulting from executing functions may vary depending on the
contents of O. This is problematic, since function types are typically inferred once and
for all. This means that the type of the outcome of evaluating a function should remain
invariant, or at least consistent, in any context where the function can be applied. Thus,
if we want to infer the type of a function once and for all, we can do one of two things:

• either we can ensure that changes to O cannot affect the type of values; or

• we must somehow record in function types the assumptions about the context
given by O, such that we can check statically that functions are always applied in
configurations (and affects configurations in ways) that satisfy the same assump-
tions.4

The first of these possibilities is the simplest, whereas the latter is the more flexible,
and reflects what is sometimes called effect type systems [TJ94, HMN04] and using
typings as types [Jim96, Wel02, MSBP15]. We investigate the latter approach in the
next chapter, and opt for the first approach here. This is in line with the traditional
approach to typing references in ML-like languages [MTHM97, Tof90, Wri95].

Since R is propagated between source and premise in all rules, it must not affect
the type of values: if it did, the same value would be allowed to have different types
in different contexts. While for λcbv it holds that R only contains environments which
do not affect the type of values (since environments in closures “shadow” the bindings
in the dynamic environment) we also need to assume that any future extensions of
R satisfies the same property. Assumption 7.1 records the assumption that only the
environment is allowed to vary.

Assumption 7.1 The environment is the only entity in R that can affect the outcome
of computations:

R[env ρ] ` e/S ⇓
co e′/S′ ⇐⇒ R′[env ρ] ` e/S ⇓

co e′/S′

Recall that, since the coinductively defined ⇓co subsumes the inductively defined ⇓
(by Lemma 5.3), Assumption 7.1 applies to both the inductive and coinductive inter-
pretation of an evaluation relation.

4Indeed, the function type already records to the left of an arrow what type of values the function can
be applied to, and typing rules check this.
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7. Type Inference for References using Types as Abstract Interpretations

Consider the following candidate for an abstraction function for closures:

α
XHM0
V ∈ OS→ ValNS

⊥ →℘(Type)

α
XHM0
V (S,〈x,e,ρ〉),

T1 _ T2

∣∣∣∣∣∣
∀R v1. T1 ∈ αHM

V (S,v1) =⇒
∃v2 S′. (v2,S′) ∈ DJeK(R[env ρ[x 7→ v1]])(S) ∧

T2 ∈ αXHM0
V (S′,v2)


While this function assigns types to closures in a sound manner, it does not provide any
means of ensuring that the closure has the same type if S varies. To capture this fact,
we introduce some assumptions about states. In particular, we assume that they are
preordered, and that types are preserved between preordered states. Assumptions 7.2
and 7.3 summarise these assumptions. When we add stateful entities later, we prove
that these assumptions are satisfied.

Assumption 7.2 States are preordered by�:

R ` e/S ⇓ v/S′ =⇒ S� S′

Assumption 7.3 The preordering� preserves value abstraction.

S� S′ =⇒ αV (S,v)⊆ αV (S′,v)

Figure 7.5 summarises two abstraction functions:

• αXHM
V is the value abstraction function, which uses the preordering of states to give

meaning to closures in the current and all subsequent states, and types divergence
with any type; and

• αXHM
R is the read-only abstraction function for the set of entities modelled by

discrete categories in the underlying indexed product category, i.e., those ranged
over by R in rules.

The abstraction functions for denotations and sets of denotations are defined in a sim-
ilar way as in Chapter 6, and Figure 7.9 omits the definition of these functions.

Type soundness. Following the same unfolding steps as illustrated in previous chap-
ter gives the proof statement in Proposition 7.4.

Proposition 7.4 (Type soundness for λcbv using XSOS)

G ` e : T =⇒ G ∈ αXHM
R (S,R) =⇒

∃v⊥ S′. (v⊥,S′) ∈ DXJeK(R)(S) ∧ T ∈ αXHM
V (S′,v⊥)
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7.2. Extensible type soundness for λcbv+ref

α
XHM
R ∈ OS→ OR→℘(OG)

α
XHM
R (S,R),

G[env Ξ]

∣∣∣∣∣∣
∀x ∈ dom(R.env).

x ∈ dom(Ξ) ∧ Ξ(x) 6= /0 ∧
∀T ∈ Ξ(x). T ∈ αXHM

V (S,R.env(x))


α

XHM
V ∈ OS→ ValNS

⊥ →℘(Type)

α
XHM
V (S,⊥), Type

α
XHM
V (S,n), {nat}

α
XHM
V (S,〈x,e,ρ〉),

T1 _ T2

∣∣∣∣∣∣
∀R v1. T1 ∈ αXHM

V (S,v1) =⇒ S� S′ =⇒
∃v2 S′′. (v2,S′′) ∈ DJeK(R[env ρ[x 7→ v1]])(S′) ∧

T2 ∈ αXHM
V (S′′,v2)


Figure 7.5: Abstraction function for λcbv with Hindley-Milner-Damas polymorphism

Proof (sketch). Each case requires subcase analysis everywhere divergence may arise.
These subcases are completely mechanical and straightforward to prove. The remain-
ing inductive subcases follow by the same line of reasoning as in Proposition 7.4, ex-
cept that the cases for function abstraction and application now include extra reasoning
steps utilising the preorder to ensure that abstractions are well-typed. See the Coq for-
malisation accompanying this thesis for the full details: http://cs.swansea.ac.uk/

~cscbp/xtss.zip.

7.2 Extensible type soundness for λcbv+ref

It is well-known that the naive extension of the Hindley-Milner-Damas typing discipline
with ML-style references is unsound [Tof90, Dam84, WF94]. We consider how the
extension of λcbv with ML-style references affects the proof of Proposition 7.4.

Semantics and denotations. The pretty-big-step XSOS rules for ML-style references
are summarised in Figure 7.7. It is completely analogous to the SOS semantics that we
recalled in Section 2.2.6.

Denotations are defined as follows: let λcbv+ref be the semantics resulting from
extending λcbv with the semantics for references given in Figure 7.7. The denotation
function DX-REFJeK for the resulting semantics is defined as in Figure 7.4, but using the
extended evaluation relations instead.

Notion of typing and abstraction. The syntax and typing rules for ML-style refer-
ences, following [MTHM97, Tof90], is given in Figure 7.7.
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7. Type Inference for References using Types as Abstract Interpretations

Abstract syntax (Σref).

Expr 3 e ::= ref(e) | deref(e) | assign(e,e) | v
ValNS 3 v ::= r | unit

r ∈ Ref , {r1, r2, . . .}

σ ∈ Store, Ref fin−→ ValNS

Auxiliary entities (Cref).

Cref , {(sto,CPREORDER(Store))}

Terminal configurations. (None required)
Rule specification.

e ⇓ e′ ref(e′) ⇓ e′′

ref(e) ⇓ e′′
(XSOS-PB-Ref1)

r 6∈ dom(σ)

ref(v)/sto σ ⇓ r/sto σ [r 7→v]
(XSOS-PB-Ref)

e ⇓ e′ deref(e′) ⇓ e′′

deref(e) ⇓ e′′
(XSOS-PB-Deref1)

r ∈ dom(σ)

deref(r)/sto σ ⇓ σ(r)/sto σ

(XSOS-PB-Deref)

e1 ⇓ e′1 assign(e′1,e2) ⇓ e′

assign(e1,e2) ⇓ e′
(XSOS-PB-Assign1)

e2 ⇓ e′2 assign(r,e′2) ⇓ e′

assign(r,e2) ⇓ e′
(XSOS-PB-Assign2)

r ∈ dom(σ)

assign(r,v)/S[sto σ ] ⇓ unit/S[sto σ [r 7→v]]
(XSOS-PB-Assign)

Figure 7.6: Abbreviated pretty-big-step XSOS rules for references
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7.2. Extensible type soundness for λcbv+ref

Abstract syntax (ΣHM
ref).

Type 3 T ::= T ref | unit

Auxiliary entities. (None required)
Terminal configurations. (None required)
Rule specification. (Syntax of expressions given by Σλcbv in Figure 7.1)

e : T
ref(e) : T ref

(XT-Ref)

e : T ref
deref(e) : T

(XT-Deref)

e1 : T ref e2 : T
assign(e1,e2) : unit

(XT-Deref)

Figure 7.7: Abbreviated extensible typing rules for references

There is only a single kind new value introduced by the extension of λcbv to λcbv+ref,
namely references r. We might consider the following candidate value abstraction
function for giving meaning to reference types:

α
XHM-R0
V (S,r),

{
T ref

∣∣ r ∈ dom(S.sto) ∧ ∃v. S.sto(r) = v ∧ T ∈ α
XHM-R0
V (S,v)

}
I.e., the type of a reference r is given in terms of the type of the value v contained in
reference r in the current store S.sto. But this function fails to record a crucial fact
about ML-style references: the type of references never change. If this is not enforced,
then types are not preserved as stores vary during execution; for example, for two
stores σ1 , {r1 7→ 1} and σ2 , {r1 7→ unit}:

(nat ref) ∈ α
XHM-R0
V (S[sto σ1], r1) but (nat ref) 6∈ α

XHM-R0
V (S[sto σ2], r1)

This is a potential hindrance for inferring the type of closures once-and-for-all.
The preordering � was introduced exactly to the avail of typing closures in the

current and all subsequent stores. Thus, we would like � to record and enforce that
the type of references in the store never change. But we cannot infer that the semantics
in Figure 7.7 alone admits this notion of preorder: for example, the following program
starts with a store σ1 and terminates with σ2:

assign(r1,unit)/S[sto σ1]

I.e., using the denotation function as is, the type of references in the store may change.
In order to give more precise abstraction functions for ML references, we refine the
semantics of references such that it safely approximates the actual semantics in Fig-
ure 7.7, and reflects the desired property of the preorder: that evaluation preserves the
type of references in the store.
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7. Type Inference for References using Types as Abstract Interpretations

Abstract syntax (ΣXHM-R
ref ). (See Figure 7.7)

ς ∈ TypeStore, Ref fin−→ Type

Auxiliary entities (CXHM-R
ref ).

CXHM-R
ref , {(sto,CPREORDER(Store));(tsto,CPREORDER(TypeStore))}

Terminal configurations. (None required)
Rule specification.

e ⇓ e′ ref(e′) ⇓ e′′

ref(e) ⇓ e′′
(XSOS-PB-Ref1)

r 6∈ dom(σ) T ∈ αXHM-R
V (S[sto σ , tsto ς ],v)

ref(v)/S[sto σ ,tsto ς ] ⇓ r/S[sto σ [r 7→v],tsto ς [r 7→T ]]
(XSOS-PB-Ref)

e ⇓ e′ deref(e′) ⇓ e′′

deref(e) ⇓ e′′
(XSOS-PB-Deref1)

r ∈ dom(σ)

deref(r)/S[sto σ ] ⇓ σ(r)/S[sto σ ]

(XSOS-PB-Deref)

e1 ⇓ e′1 assign(e′1,e2) ⇓ e′

assign(e1,e2) ⇓ e′
(XSOS-PB-Assign1)

e2 ⇓ e′2 assign(r,e′2) ⇓ e′

assign(r,e2) ⇓ e′
(XSOS-PB-Assign2)

r ∈ dom(σ) r ∈ dom(ς) ς(r) ∈ αXHM-R
V (S[sto σ , tsto ς ],v)

assign(r,v)/S[sto σ ,tsto ς ] ⇓ unit/S[sto σ [r 7→v],tsto ς ]

(XSOS-PB-Assign)

Figure 7.8: Abbreviated pretty-big-step XSOS rules for references with refined seman-
tics

Refined semantics for references. We refine the semantics for references by intro-
ducing a type store as a new auxiliary entity that records which types references are
assigned to, and by introducing refined rules for references that utilise it. Figure 7.8
summarises the refined semantics. It relies on the abstraction function αXHM-R

V in order
to choose precise types for references, where αXHM-R

V is defined in Figure 7.9. Here, the
only change between the αXHM

{R,V} and αXHM-R
{R,V} abstraction functions is the naming and the

addition of the case for references in αXHM-R
V .
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7.2. Extensible type soundness for λcbv+ref

α
XHM-R
R ∈ OS→ OR→℘(TypeEnv)

α
XHM-R
R (S,R),

G[env Ξ]

∣∣∣∣∣∣
∀x ∈ dom(R.env).

x ∈ dom(Ξ) ∧ Ξ(x) 6= /0 ∧
∀T ∈ Ξ(x). T ∈ αXHM-R

V (S,R.env(x))


α

XHM-R
V ∈ OS→ ValNS

⊥ →℘(Type)

α
XHM-R
V (S,⊥), Type

α
XHM-R
V (S,n), {nat}

α
XHM-R
V (S,〈x,e,ρ〉),

T1 _ T2

∣∣∣∣∣∣
∀R v1 S′. S� S′ =⇒ T1 ∈ αXHM-R

V (S′,v1) =⇒
∃v2 S′′. (v2,S′′) ∈ DJeK(R[env ρ[x 7→ v1]])(S′) ∧

T2 ∈ αXHM-R
V (S′′,v2)


α

XHM-R
V (S,r),

{
T ref

∣∣∣∣ r ∈ dom(S.sto) ∧ r ∈ dom(S.tsto) ∧
S.tsto(r) ∈ αXHM-R

V (S,S.sto(r))

}

Figure 7.9: Abstraction function for λcbv+ref′

Mutual dependency. As the astute reader may have noticed, there is a mutual de-
pendency between the abstraction function and the dynamic semantics. While a po-
tential pitfall with relying on such a mutual dependency is paradoxical reasoning, we
do not expect it to give rise to inconsistencies, since we expect it to be an instance
of induction-recursion [Dyb00, DS06, GMNF13]. We discuss the mutual dependency
further in Section 7.3.2.

Coq does not support induction-recursion, i.e., expressing functions and types such
that they mutually depend on each other. And since the abstraction function does
not correspond to a strictly-positive type, it is not straightforward to express as two
mutually dependent relations either. In the Coq code accompanying this thesis, we
work around the issue as follows:

1. We axiomatise the existence if a “type oracle” for checking that a given type is
contained in the set of types that a given value can have. Thus, instead of αXHM-R

V ,
we use a function typeOracle ∈ Val→℘(Type), whose existence we axiomatise in
Coq.

2. After specifying both the refined semantics (using typeOracle instead of αXHM-R
V )

and the abstraction function (expressed as in Figure 7.9), we axiomatise that the
two functions typeOracle and αXHM-R

V are equivalent:

T ∈ typeOracle(v) ⇐⇒ T ∈ α
XHM-R
V (v)

Besides the potential pitfall with relying on the mutual dependency described here,
there is also a potential philosophical issue with the refined semantics: big-step SOS
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7. Type Inference for References using Types as Abstract Interpretations

typically embody an operational approach to dynamic semantics. But the refined se-
mantics now depends on the abstraction function, which is undecidable. We stress that
the purpose of the refined semantics is to make explicit the fact that the ML reference
discipline preserves the type of references, not to act as an operational semantics for
the language.

The refined semantics for λcbv+ref, which we call λcbv+ref′ , is given by the union of
the rule specification of the refined ref semantics in Figure 7.8 and the rule specifica-
tion of λcbv from Figure 5.2 with let (Figure 7.3).

Preordering for states. The notion of preorder should ensure that the type store
remains invariant and well-typed between transitions, where well-typedness is defined
in Definition 7.5.

Definition 7.5 (Well-typedness of states) A state S is well-typed when all references in
the store S.sto are typed by a corresponding reference in the type store S.tsto.

wt(S) ⇐⇒
(
dom(S.tsto) = dom(S.sto) ∧ ∀r ∈ dom(S.tsto). S.tsto(r) ∈ α

XHM-R
V (S,S.sto(r))

)

Definition 7.6 defines a relation� that records exactly what we need. Lemma 7.7
shows that� is a preorder, i.e., that it is a reflexive and transitive relation.

Definition 7.6 (Preordering for states)

S1� S2 ⇐⇒ (wt(S1) =⇒ wt(S2) ∧ ∀r ∈ dom(S1). r ∈ dom(S2))

Lemma 7.7 (� is reflexive and transitive)

(∀S. S� S) ∧
(
∀S S′ S′′. S� S′ =⇒ S′� S′′ =⇒ S� S′′

)
Proof. Both reflexivity and transitive follow straightforwardly from the definition of
�.

Importantly, the notion of preorder in Definition 7.6 satisfies Assumptions 7.2 and
7.3, as shown by Lemmas 7.8 and 7.9.

Lemma 7.8 (λcbv+ref′ satisfies Assumption 7.2)

R ` e/S ⇓ e′/S′ =⇒ S� S′

Proof. The proof is by straightforward rule induction on the evaluation relation, using
the definition of preorder in Definition 7.6.
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7.2. Extensible type soundness for λcbv+ref

Lemma 7.9 (λcbv+ref′ satisfies Assumption 7.3)

S� S′ =⇒ α
XHM-R
V (S,v)⊆ α

XHM-R
V (S′,v)

Proof. The property is equivalently expressed as:

S� S′ =⇒ T ∈ α
XHM-R
V (S,v) =⇒ T ∈ α

XHM-R
V (S′,v)

The proof is by structural induction on the structure of T , using the transitivity of ‘�’
for the closure case.

First attempt: type soundness. We can now attempt to prove type soundness using
the definitions given in this section. Indeed, most of the cases will succeed, the only
exception being let expressions. Recall from Proposition 6.4 that the let case of the
proof relies on the determinism of the evaluation relation. The same argument would
suffice to prove the property required for the let case with references. However, the
refined semantics for references is not deterministic: when allocating a reference, the
rule (XSOS-PB-Ref) makes a non-deterministic choice from the set of possible types for
the value being assigned to the allocated reference.5 Thus, the resulting evaluation
relation is only deterministic up-to the structure of type stores.

This is the well-known problem with extending a Hindley-Milner-Damas type sys-
tem with references, summarised by Tofte [Tof90, p. 11] as follows:

The naive extension of the polymorphic type discipline fails because it ad-
mits generalisation on type variables that occur free in the store typing.

Our notion of polymorphism uses sets as polytypes rather than variables. Thus in
our setting, the problem is summarised as: the naive extension of the polymorphic
type discipline fails because it admits generalisation over stores that are inconsistently
typed. The following program is a classic counter-example:

let r = ref(λx.x) in
seq(assign(r,ref(λx.plus(x,num(1)))),(deref(r) unit))

This program contains a type error (trying to add a natural number and unit), but it
type-checks using the typing rules in Figures 7.1, 7.2, and 7.7. The problem is that
the rule for let generalisation permits us to quantify over types that correspond to
inconsistent type stores: using the rule (XP-Let), we can infer that r has the polytype
{(nat _ nat) ref,(unit _ unit) ref}. These types admit both a type store where the
reference bound to r has type nat_ nat and a type store where it has type unit_ unit,
even though the store after the assignment in the second line of the program is only
consistent with the store where the allocated reference refers to a value of type nat _
nat.

5Technically, the rule also makes a non-deterministic choice of name for the new reference. We assume
that there is a systematic way in which such names could be generated deterministically, however.
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Abstract syntax (ΣHM
let−V R).

sv ∈ SVal ::= {λx.e}∪{num(v)}
v ∈ ValNS

x ∈ Var

Ξ ∈ PolyTypeEnv, Var fin−→℘(Type)

Auxiliary entities (CHM
let).

CHM
let ,

{
env : CDISCRETE(PolyTypeEnv)

}
Final configurations. (None required)
Rule specification.

P 6= /0 (∀T ∈ P. env Ξ ` sv2 : T ) env Ξ[x 7→ P] ` e1 : T1

env Ξ ` let x = sv2 in e1 : T1
(XP-Let-V)

e2 6∈ SVal env Ξ ` e2 : T2 env Ξ[x 7→ {T2}] ` e1 : T1

env Ξ ` let x = e2 in e1 : T1
(XP-Let-E)

Figure 7.10: Extensible typing rules for let with value restricted Hindley-Milner-
Damas polymorphism

Type soundness using the value restriction. Several solutions have been devised in
order to deal with polymorphic generalisation with references [Dam84, Tof90, LW91,
TJ94, WF94, Wri95, Gar04]. Of these solutions, Wright’s [Wri95] value restriction is the
simplest. The idea is to only allow polymorphic generalisation for values, such that we
guarantee that the stores over which types implicitly quantify are consistent with one
another. Figure 7.10 summarises the rules for let with the value restriction, where we
introduce the sort SVal for distinguishing the set of source terms that represent values;
i.e., functions and numerals. With this restriction in place, it becomes possible to prove
that the type system given by the union of the specifications in Figure 7.1 and 7.10 is
sound.6 The proof relies on Assumptions 7.2 and 7.3.

We need to make one small adjustment to the type soundness proof statement:
we must assume that the store S in which evaluation begins is well-typed, i.e., wt(S).
Proposition 7.10 proves type soundness of λcbv+ref′ with the value restriction, where
DX-REF′ is the denotation function for λcbv+ref′ .

6This is the reason why we wanted separate specification of let and the remaining constructs for λcbv:
so that we could replace the rule for let which interacts with the reference extension.
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7.2. Extensible type soundness for λcbv+ref

Proposition 7.10 (Type soundness of λcbv+ref′)

G ` e : T =⇒ wt(S) =⇒ G ∈ αXHM-R
R (S,R) =⇒

∃v⊥ S′. (v⊥,S′) ∈ DX-REF′JeK(R)(S) ∧ αXHM-R
V (S′,v⊥)

Proof. The proof is by induction on the structure of the typing relation. The newly
added cases for references follow straightforwardly, as does the non-polymorphic let-
case. The polymorphic let-case for values follow by a similar line of reasoning as in
Proposition 6.4, except there is no need for alluding to determinism, since all terms
of sort SVal have a single unobservable transition that does not alter the store. We
refer the reader to the Coq formalisation accompanying this thesis for the full proof:
http://cs.swansea.ac.uk/~cscbp/xtss.zip.

From refined to standard semantics of references. Our proof of soundness in Propo-
sition 7.10 relies on a refined semantics for references; but our original goal was to
prove that the original rules we gave for references in Figure 7.7 were type sound. It
is straightforward to show that the semantics of λcbv+ref′ is a sound approximation of
λcbv+ref (Proposition 7.11). As a corollary of this relationship, it follows that the type
system is also sound for λcbv+ref.

Proposition 7.11 (λcbv+ref′ is sound w.r.t. λcbv+ref) Let ⇓co denote the coinductive
interpretation of the evaluation relation for λcbv+ref, and ⇓co ′ denote the coinductive
interpretation of the evaluation relation for λcbv+ref′; then:

R ` e/S[tsto ς ] ⇓
co′ e′/S′[tsto ς ′] =⇒ ∀ς ′′. R ` e/S[tsto ς ′′] ⇓

co e′/S′[tsto ς ′′]

Proof. The proof is by straightforward coinduction on ⇓co.

Corollary 7.12 (The denotations of λcbv+ref′ is sound w.r.t. λcbv+ref) Let DX-REFJ•K
be the denotation function for λcbv+ref, and DX-REF′J•K be the denotation function for
λcbv+ref′; then:

(v⊥,S′[tsto ς ]) ∈ DX-REF′JeK(R)(S) =⇒ (v⊥,S′[tsto ς ]) ∈ DX-REFJeK(R)(S[tsto ς ])

Proof. The property follows from unfolding the definitions of DX-REFJ•K and DX-REF′J•K,
Proposition 7.11, and the fact that coevaluation implies either inductive convergence
or divergence (Lemma 5.5).

Corollary 7.13 (λcbv+ref is type sound) Let DX-REFJ•K be the denotation function for
λcbv+ref, and DX-REF′J•K be the denotation function for λcbv+ref′; then:

G ` e : T =⇒ wt(S) =⇒ G ∈ αXHM-R
R (S,R) =⇒

∃v⊥ S′[tsto ς ]. (v⊥,S′[tsto ς ]) ∈ DX-REFJeK(R)(S[tsto ς ]) ∧ αXHM-R
V (S′[tsto ς ],v⊥)

Proof. By invoking Proposition 7.10 on the premises, we get:

∃v⊥ S′[tsto ς ]. (v⊥,S′[tsto ς ]) ∈ DX-REF′JeK(R)(S) ∧ α
XHM-R
V (S′[tsto ς ],v⊥)

The goal follows by existential elimination and Corollary 7.12.
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7. Type Inference for References using Types as Abstract Interpretations

7.3 Assessment and related work

This chapter investigated two research questions: whether types as abstract interpre-
tations scales as a proof method; and whether extensible transition system semantics
is useful for making proofs less prone to restructuring as languages are extended. We
investigated these questions by making the following contributions:

• we have given a types as abstract interpretations account of ML-style references;
and

• we have adapted the types as abstract interpretations approach to XSOS.

We assess these contributions against the stated research questions.

7.3.1 Proof method

The extension with references required us to update our notion of typing to include
stores, and carefully assess which information to record in abstraction functions. The
careful assessment was carried out by attempting to carry out the proof and observ-
ing where stronger requirements are required. In other words, proof acts as a guiding
principle for inferring where we need to strengthen requirements in either the abstrac-
tion functions or in the typing rules that approximates the most precise abstraction.
Indeed, Cousot stresses that abstract interpretation is useful as a design methodology
for constructing type systems that are safe by construction [Cou97, p. 321]:

It is interesting to note that instead of “formalizing the type system by a
set of type rules, and verifying that program execution of well-typed pro-
grams cannot produce type errors” [Car96], the abstract interpretation de-
sign methodology ensures that type systems will be sound by construction,
this soundness requirement being used as a guideline for designing the type
system.

Using inductive proofs as a means of calculation is an idea that has recently been
explored by Bahr and Hutton to calculate correct compilers [BH15]. By so-called con-
structive induction [Bac03, Chapter 12.4] they use a denotational semantics and the
correctness criterion to use only the proof of correctness and the denotational seman-
tics as a guiding principle for inferring both the instruction set and execution function
for a virtual machine, as well as the compilation function for translating a program into
virtual machine functions.

There is an analogy between our use of types as abstract interpretations and Bahr
and Hutton’s work: using types as abstract interpretations, we are given a correctness
criterion (the type soundness statement which constitutes the Galois connection) and a
dynamic semantics, and we want to infer the structure of what constitutes types, their
meaning (abstraction/concretisation functions), and a safe abstraction of this meaning.
The many unknowns involved in this process makes it all the more practical to use the
proof as a guiding principle.
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7.3. Assessment and related work

In this chapter we started from a well-known type system and used the proof as
a guiding principle for inferring the structure of a meaning function for types. The
steps involved in this calculation were equal parts involved and illuminating: involved,
since they force us to formally express the intuitive meaning of types, which is not
always straightforward; the mutually dependent abstraction function and evaluation
relation is a witness to this (although, as we remark below, there are ways in which we
might have avoided this). The calculation is illuminating for the same reason that it is
involved: it forces us to be conscious about the meaning of types. We believe that types
as abstract interpretations could provide a useful basis for inferring new and novel
type systems in a principled manner. Indeed, using abstract interpretation as the basis
of calculating and discovering new analysis frameworks for programming languages
seems an approach that is gaining traction [VHM10, Mig10, SDM+13].

A natural question to ask ourselves: is giving and working with abstraction/con-
cretisation functions really necessary in order to take a calculational approach to type
systems? Could we not have used the traditional approach to proving big-step type
soundness, or even a small-step argument? It seems plausible that a small-step pro-
gress/preservation style proof might provide a good basis for inferring the structure
of typing rules, too. The traditional approach to big-step type soundness based on
“wrong” rules appears somewhat more problematic, in that failure to add a “wrong”
rule might compromise the calculation, allowing us to infer that a set of typing rules
are sound, even if they admit programs that go wrong.

7.3.2 Pitfall: well-foundedness

A pitfall with using types as abstract interpretations is that it can sometimes be chal-
lenging to express the precise notion of type in a manner that is obviously well-founded.

In this chapter, the pitfall is even more evident, in particular in the refined seman-
tics for references, where we gave an abstraction function and evaluation relation that
are mutually dependent on each other. We do not believe that this mutual dependency
is problematic from the perspective of type soundness and Proposition 7.10, for two
reasons (where we ignore the fact that it is well-known that the type system we consid-
ered is sound for ML-style references [Wri95, WF94] and focus on the proof method):

• I have not been able to find examples of programs that make the refined seman-
tics assign inconsistent types to references or outcomes. For example, one might
expect cyclic references to be problematic. This does not appear to be a prob-
lem with the refined abstraction function. For example, the following cyclic store
from Pierce [Pie02, p. 163] is typable using our abstraction functions and notion
of well-typedness:

σ , { r1 7→ 〈x,(deref(s) x),{s 7→ r2}〉,
r2 7→ 〈x,(deref(s) x),{x 7→ r1}〉 }

Here, the closure contained in r1 refers to the reference r2, and vice versa. Given
the abstraction function for the refined semantics, this store is typed by the fol-
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7. Type Inference for References using Types as Abstract Interpretations

lowing type store:
ς , { r1 7→ (nat_ nat) ref,

r2 7→ (nat_ nat) ref }
Each of the closures in σ diverge when applied to a natural number. Since
nat ∈ αXHM-R

V (S,⊥) it holds that the configuration with σ and ς is well-typed, i.e.,
wt(S[sto σ , tsto ς ]):

dom(σ) = dom(ς) ∧
nat_ nat ∈ αXHM-R

V (S[sto σ , tsto ς ],σ(r1)) ∧
nat_ nat ∈ αXHM-R

V (S[sto σ , tsto ς ],σ(r2))

• Recent work on the datatypes à la carte approach to extensible datatypes [Swi08]
in Coq shows how to deal with mutually-recursive definitions by using Mendler
style recursion [DdSOS13, DKSO13]. Preliminary experiments conducted to-
gether with Paolo Torrini of encoding abstraction functions in a similar style
suggests that this means of encoding could be useful for encoding the kind of
mutual dependence found in the refined semantics.

The mutual dependency in the refined semantics used in our proof could also be
avoided by opting for a proof closer to the style of Tofte’s proof [Tof90], by embody-
ing the preordering of stores in the proof statement itself. Recall the the abstraction
function for denotations used for the refined semantics is defined as follows:

α
XHM-R
D ∈ D→ T

α
XHM-R
D (d),

{
(G,T )

∣∣∣∣ ∀S R. G ∈ αXHM-R
R (S,R) =⇒

∃v S′. (v,S′) ∈ d(R,S) ∧ T ∈ αXHM-R
V (S,v)

}
Following Tofte, we could alternatively define it as:

α
XHM-R
D ∈ D→ T

α
XHM-R
D (d),

{
(G,T )

∣∣∣∣ ∀SR. G ∈ αXHM-R
R (S,R) =⇒

∃v S′. (v,S′) ∈ d(R,S) ∧ T ∈ αXHM-R
V (S,v) ∧ S� S′

}
This avoids the need for instrumenting the semantics, but changes the structure of the
induction proof that we gave in Proposition 7.4 for λcbv based on pretty-big-step XSOS.
If this is truly necessary, it would provide evidence that the answer is no to the research
question: “Do extensible transition system semantics facilitate alleviating the drawback
of big-step type soundness that extensions may require a complete restructuring of
semantics and proof?” Here, we have outlined a proof and an approach that does
not require such restructuring. We leave it to future work to investigate the well-
foundedness of the refined semantics on which the proof is based.

Another argument for the morality of our approach is that our relation in fact ap-
pears to be an instance of an inductive-recursive definition [Dyb00, DS06, GMNF13],
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i.e., an inductive datatype (in our case, an evaluation relation) and a recursive func-
tion (in our case, an abstraction function) that is mutually defined. Our relation
might also correspond to an instance of induction-induction [NF13]. We leave it to
future work to verify that the criteria for inductive-recursive definitions [Dyb00, DS06,
GMNFS13, GMNF15] or inductive-inductive definitions [NF13] are satisfied. Similarly
for coinductive-recursive definitions, since the evaluation relation is dually defined.
Capretta [Cap13] has investigated such definitions.

7.3.3 Extensible proofs

The extension of our semantics with references did not require us to change the cases
for existing constructs. The extensibility stems from the fact that, using XSOS, even
side-effect free languages propagate stateful configurations. While this makes side-
effect free semantics somewhat less straightforward to reason about, it allows us to
reason about configurations with an open-ended set of objects in it, and makes it feasi-
ble to extend the semantics without reformulating the semantics, and, as this chapter
suggests, facilitates reuse of proofs.

Our approach introduced a notion of preorder that records an invariant that must
hold between transitions. We might have used the evaluation relation everywhere we
use the preorder instead. The preorder records just the necessary invariant, whereas
we would have to explicitly derive the invariant from the evaluation relation in proofs,
had we used that instead. It seems like this might also aggravate the potential problem
with the mutual dependency between the abstraction function and evaluation relation
even further.

7.3.4 Representation of divergence

In order to represent and distinguish divergence, we gave denotation functions which
contain the union of the set of all finite derivations and the set of infinite derivations.
As remarked, the distinction between these two sets gives rise to extra case analysis in
proofs, though most of this case analysis is completely mechanical. The literature offers
several suggestions for how to best represent divergence in big-step semantics, many
of which we recalled in Chapter 5. It would be interesting to see how to adapt such
representations to the types as abstract interpretations proof approach. Particularly
interesting approaches to consider adapting would be trace-based semantics [NU09]
and Danielsson’s functional operational semantics using the partiality monad [Dan12],
as well as type soundness using clock-based semantics [Sie13].

7.3.5 Related work

In this chapter we investigated how to use types as abstract interpretations for proving
type soundness of a language with functions and ML-style references. This problem
has been considered by several other authors. Tofte [Tof90], whose work this chapter
draws some inspiration from, gave a type soundness proofs using a big-step semantics
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7. Type Inference for References using Types as Abstract Interpretations

with an explicit notion of going wrong. Harper and Stone [HS00b] gives a “type-
theoretic interpretation” of Standard ML by translating it into a typed intermediate
language based on a small-step semantics. They conclude [HS00b, Section 4]:

The internal language admits a clean formulation of the soundness theorem
that does not rely on instrumentation of the rules with explicit “wrong”
transitions. To state soundness in the framework of The Definition requires
that the dynamic semantics be instrumented with such error transitions,
which would significantly increase the number of rules required.

Harper and Stone state that they draw inspiration from Felleisen and Wright’s [WF94]
syntactic approach to type soundness, which also takes a small-step approach to prov-
ing type soundness of a language very similar to the one considered here. Indeed, their
approach studies specifically how to give type soundness proofs for Hindley-Milner-
Damas style polymorphic type systems. Here, we have used types as abstract interpre-
tations to give a type soundness proof of a polymorphic type system using a big-step
style reminiscent of the one in Standard ML but without explicit “wrong” transitions.

We also considered the extent to which our use of XSOS facilitated reuse of cases
when proving type soundness. The reuse that we obtained was of a syntactic nature
(we could call it “copy-paste reuse”), in that we were able to reuse the text of the
proof for λcbv without let, rather than the proof itself. One of the motivations behind
Felleisen and Wright’s syntactic approach is also being able to easily extend type sound-
ness proofs as languages evolve, and the extent to which they reuse their proofs is also
of a syntactic nature. There are several authors who have investigated a more semantic
approach to reuse, in the sense of being able to combine proofs in proof assistants. Ex-
amples include Delaware et al.’s work on Meta-Theory à la Carte [DdSOS13, DKSO13],
Schwaab and Siek’s modular type-safety proofs in Agda [SS13], and Madlener’s formal
component-based semantics which shows how to obtain semantic reuse of proofs based
on MSOS [MSvE11], and Torrini and Schrijver’s modular datatypes with Mendler in-
duction [TS15].

Part of the flexibility of our approach was also afforded by our use of pretty-big-step
semantics, which makes it possible to deal with abrupt termination, divergence, and
even control constructs without any reformulation. Bodin et al. [BJS15] illustrates
that the extensible nature of the pretty-big-step style also constitutes a useful basis
for instrumenting semantics and deriving program analyses using abstract interpreta-
tion. The type soundness proof for references also relied on instrumentation, but of a
somewhat different nature to the kind of instrumentation of Bodin et al.
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8 Type and Effect Inference
using Types as Abstract Interpretation
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The naive extension with references of Hindley-Milner-Damas polymorphism fails be-
cause it admits generalisation over stores that are inconsistently typed. The value
restriction solves the problem by inhibiting let-polymorphic generalisation, but also
unfairly rejects various programs that cannot go wrong.

In this chapter we propose an alternative store-based type system that tracks the
types of references more closely by recording the type of references using type stores.
This enables unrestricted let-polymorphic generalisation, and permits type checking
programs that would otherwise be rejected using the value restriction. The flexibility
comes at the cost of more rigid typing of references which unfairly rejects some pro-
grams that type check using ML-style reference types. Store-based typing is closely
related to alias typing [SWM00] and so-called type and effect systems [HMN04, Wri92,
TJ94]. In addition to checking what kinds of values a program produces, type and
effect systems also track other effects, such as allocating, reading, and updating refer-
ences. We compare and contrast our approach with ML-style references types (in Sec-
tions 8.1 and 8.2) as well as alternative approaches from the literature (Section 8.4),
and outline a type soundness argument for the type system (Section 8.3) by adapting
the proof method from the previous chapter.

The type system this chapter proposes is a variant of the type system in [BPMT15]
which was joint work with Mosses and Torrini. Whereas the type system in [BPMT15]
supports so-called strong updates (i.e., it types programs where the types of references
may change during evaluation), the type system here is based on invariant updates
(i.e., the types of references do not change during evaluation).
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8.1 The problem with let-polymorphic generalisation with
references

Before delving into store-based types, we recall the problem with let-polymorphic gen-
eralisation with references. Section 7.2 presented the following example of a faulty
program which type checks using unrestricted let-polymorphic generalisation with ref-
erences:

let r = ref(λx.x) in
seq(assign(r,ref(λx.plus(x,num(1)))),deref(r) unit)

With unrestricted let-polymorphism, we can infer that the variable ‘r’ in the program
above has the the following polytype:

{(T _ T ) ref | T ∈ Type}

This type describes the set of all references that are typed by the identity function
type T _ T . But references may vary during execution, whereby this type describes
stores that are inconsistently typed. For example, in the program above, the store after
making the assignment in the second line of the program is only consistent with a store
where the reference bound by ‘r’ has type nat_ nat.

8.1.1 The value restriction

The value restriction solves the problem by inhibiting any generalisation over stores:
only values (functions and numbers) are generalisable, whereby we only generalise
expressions that do not alter the store. Thus, the polytypes produced by polymorphic
generalisation trivially correspond to stores that are consistent. For example, the value
restriction rejects the faulty program above.

But the value restriction also restricts polymorphic generalisation of many programs
that are not inconsistently typed. Consider the following well-typed program which is
accepted with the value restriction:

let id = (λx.x) in
seq(id num(1), id unit)

The following equivalent program, however, is not accepted by the value restriction,
since ‘y’ is not a value:

let id = (λx.x) (λy.y) in
seq(id num(1), id unit)

But there are no stores involved, and polymorphic generalisation is clearly safe.

8.1.2 η-expansion

The example above is somewhat contrived. Wright’s [Wri95] study of realistic Standard
ML programs concludes:
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We found that most ML programs either satisfy the restriction of polymor-
phism to values already, or they can be modified to do so with a few η-
expansions.

The η-expansion technique that Wright refers to consists in η-expanding a term to
make it into a value which can be generalised. The following program illustrates how
such η-expansion makes it possible to type check the contrived example program above
that was rejected using the value restriction:

let id = (λz.(λx.x) (λy.y) z) in
seq(id num(1), id unit)

For this program, such η-expansion is unproblematic. For more interesting programs,
η-expansion can be problematic, however.

Consider the following example where we would like to generalise over the result
of applying some computationally expensive but pure function (i.e., a function that
does not alter the store), expensive function to unit:

let f = (expensive function unit) in
seq(f num(1), f num(2))

We can modify and η-expand this program as follows:

let f = (λu.(λx.expensive function unit)u) in
seq(f num(1), f num(2))

If the application expensive function unit is computationally expensive, the ex-
panded program is more expensive than the original program: the call-by-value se-
mantics of application means that the application expensive function unit is com-
puted twice (once for each call of f); in contrast, the original program evaluated
expensive function unit once in the binding expression for f.

8.2 A store-based type system

We propose a novel type system that permits let-polymorphic generalisation without
the value restriction. The idea is that the type system records store typings by means of
type stores in the type system. Threading such stores through the type system provides
valuable information for polymorphic generalisation.

Figure 8.2 defines the abstract syntax for types and typings, as well as typing rules
for store-based types. We consider and explain the novel additions as compared with
ML-style references:

Aliases. We use aliases to represent a set of runtime references. Our use of the word
alias differs from [SWM00]: they use it mainly to describe pointers from references to
references. In contrast, we use the word alias in a broader sense to describe the type-
level counter-part to a run-time reference. Alias type stores map aliases to types, where
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Abstract syntax.

a ∈ Alias, {a1,a2, . . .}

Type 3 T ::= T _Σ T | nat | aref(T,a)

Σ ∈ AliasTypeStore, Alias fin−→ Type

Ξ ∈ PolyTypeEnv, Var fin−→ Type

Auxiliary entities.

CTYPE
ref , {(sto,CPREORDER(TypeStore))}

Final configurations. (None required)
Rule specification.

e1 : nat e2 : nat
plus(e1,e2) : nat

(XP-Plus)

n : nat (XP-Nat)

T ∈ Ξ(x)
env Ξ ` x : T

(XP-Var)

env Ξ[x 7→ {T2}] ` e/sto Σ : T1/sto Σ′

env Ξ ` (λx.e)/sto Σ : (T2 _Σ−Σ′ T1)/sto Σ

(XPZ-Fun)

e1/sto Σ : (T2 _Σ0 T1)/sto Σ′ e2/sto Σ′ : T2/sto Σ′′

e1 e2/sto Σ : T1/Σ′′[Σ0]
(XPZ-App)

P 6= /0 (∀T1 ∈ P. env Ξ ` e1 : T1) env Ξ[x 7→ P] ` e2 : T2

env Ξ ` let x = e1 in e2 : T2
(XPZ-Let)

a 6∈ dom(Σ′)
e/sto Σ : T/sto Σ′

ref(e)/sto Σ : aref(T,a)/sto Σ′[a7→T ]
(XPZ-Ref)

e : aref(T,a)
deref(e) : T

(XPZ-Deref)

e1 : aref(T,a) e2 : T
assign(e1,e2) : unit

(XPZ-Asgn)

Σ−Σ
′ , {(a 7→ T ) ∈ Σ | a 6∈ dom(Σ′)} (TA-Diff)

Σ[Σ′], Σ∪θ(Σ′) such that dom(θ), dom(Σ′)
and dom(Σ)∩dom(θ(Σ′)) = /0

(TA-Extend)
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the notion of reference type differs from ML-style reference types by recording an alias
as well as a type. An alias reference type aref(T,a) represents a reference containing a
value of type T , aliased by a in the type store. It is not strictly necessary to record the T
in aref(T,a), since alias type stores map aliases to types; we include it to make it easier
to read types independently of type stores.

Function types. Applying a function may result in allocation of new references. This
effect is reflected in function types by annotating the arrow of the function type with an
alias type store recording the set of references that will be allocated when the function
is applied. The rule (XPZ-Fun) reflects this by typing the body of the function using the
current alias type store Σ to infer its type and updated alias type store Σ′. The rule does
not propagate the updated map Σ′ to the conclusion. Instead, the difference between
Σ and Σ′ is recorded in an annotation on the function arrow, where the difference is
defined by equation (TA-Diff) in Figure 8.2. Modelling maps as sets of pairs of an alias
a and a type T , (a 7→ T ), the equation specifies that the difference between alias type
stores Σ and Σ′ is the set of all pairs (a 7→ T ) ∈ Σ such that a is not in the domain of the
map Σ′.

The application rule (XPZ-App) ensures that applying a function allocates aliases
recorded in the function type, by adding the aliases Σ0 to the alias type store Σ′′. The
rule ensures that aliases being added to the store are fresh: the operation Σ[Σ′] produces
a store Σ′′ containing all the mappings in Σ, and applies a substitution θ to Σ′ (written
θ(Σ′)) which renames all aliases such that the domain of Σ and θ(Σ′) become disjoint.
To prevent renaming of aliases other than those in the domain of Σ′, we require that
the domain of the substitution (i.e., the set of aliases that are renamed) is exactly the
domain of Σ′.

Typing of references. The rules for references, (XPZ-Ref), (XPZ-Deref), and (XPZ-
Asgn), resemble those for ML-reference typing. The main difference is in the (XPZ-Ref)
rule which adds a fresh alias to the alias type store to reflect that a reference of the
given type is being allocated. Since alias reference types aref(T,a) record the type of
the reference it represents there is no need for the rules (XPZ-Deref) and (XPZ-Asgn)
to consult the alias type store, except to update it in connection with assignment. Like
ML-reference types, store-based types are invariant.

Polymorphism. The rule (XPZ-Let) admits unrestricted generalisation over the types,
but not over alias type stores. This ensures that stores are consistently typed. For
example, the faulty program from earlier does not type-check:

let r = ref(λx.x) in
seq(assign(r,ref(λx.plus(x,num(1)))),deref(r) unit)

The polytype of the expression bound by ‘r’ is the singleton set {aref(nat _ /0 nat,a)}
for some fresh alias a, bound in the alias type store to (a 7→ nat _ /0 nat). Polymorphic
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generalisation is restricted, since the alias a is in the type store, and the type store is
not generalised by the rule.

Many programs that are rejected using the value restriction are accepted using
store-based types. The following program now type-checks, for example:

let y = λx.x in

let id = y in

seq(id num(1), id unit)

The program is straightforwardly generalised, since types without free aliases are trea-
ted polymorphically. Thus, the polytyping for ‘y’ is inherited for ‘id’:

{T _ /0 T | T ∈ Type}

Similarly, the type of the program using the expensive function is generalisable with-
out eta-expansion:

let f = (expensive function unit) in
seq(f num(1), f unit)

Functions that allocate aliases can also be polymorphically generalised. Consider,
for example, the following program which binds a function for constructing new refer-
ences:

let mkref = λx.ref(x) in
seq(mkref num(1),mkref unit)

The function bound by ‘mkref’ allocates a fresh reference, and we can infer the following
polytype for it in the binder of the program above:

{T _{a7→T} aref(T,a)}

Although this polytype generalises over aliases, it has little impact on inference of the
remainder of the program, since aliases are substituted in the application rule (XPZ-
App) to ensure that they are fresh when functions are applied.

These examples illustrate how the extra information afforded by recording aliases
in alias type stores is useful for deciding when polymorphic generalisation is safe. But
the extra constraints of alias types also restricts certain programs from type checking.

Rigid reference typing. Alias reference types record aliases. This makes types in-
volving aliases which are mapped to the same type syntactically distinct. For example,
aref(T,a1) and aref(T,a2) where a1 6= a2 cannot be used in the same context for the
typing rules in Figure 8.2. This restricts typing certain programs that cannot go wrong,
and that would be accepted by a type system with ML-style references. For example, a
program such as the following is rejected:

(λ id.seq(id ref(1), id ref(2))) (λx.x)
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The application rule (XPZ-App) does not admit polymorphic generalisation, so the func-
tion type scoped by id can only have either of the two types aref(nat,a1)_ /0 aref(nat,a1)
or aref(nat,a2)_ /0 aref(nat,a2) where a1 6= a2.

We could conceivably relax the type system to make it more flexible for programs
such as the one above by introducing a suitable notion of type equality. A candidate
rule would be:

a,a′ ∈ dom(Σ) Σ(a) = Σ(a′)
e/sto Σ : aref(T,a′)/sto Σ

e/sto Σ : aref(T,a)/sto Σ

(XPZ-RefEq)

A curious feature of store-based types is that type annotations may also inhibit type
inference for programs that cannot go wrong. For example, the following program is
rejected using store-based types:

(λ id.seq(id id, id (λx.seq(ref(num(1)),x)))) (λx.x)

This program applies the identity function to, respectively, itself and the function
(λx.seq(ref(num(1)),x)) which allocates a reference and returns the value it is applied
to. The program is rejected since the two types of these functions are distinct using
store-based types: T _ /0 T and T _{(a7→T )} T for some a and T .

We could conceivably relax the type system with a suitable notion of sub-typing to
make it more flexible for such programs. A candidate rule would be:

Σ⊆ Σ′

e : T1 _Σ′ T2

e : T1 _Σ T2
(XPZ-StoreSub)

where Σ⊆ Σ′ checks that all mappings in Σ are also in Σ′.
The rest of this chapter focuses on the type system in Figure 8.2 without the candi-

date rules above.

8.3 Types as abstract interpretations for store-based types

We consider how to give meaning to store-based types using types as abstract inter-
pretations. As with classic ML-style references, the store-based type system considered
here uses invariant typing of store references. In order to give meaning to these, we
use a refined semantics, similar to the refined semantics for ML reference types from
the previous chapter.

8.3.1 Refined semantics for references

As in the previous section, we instrument the semantics to simplify the abstraction
functions and type soundness proof. The refined semantics is given in Figure 8.1. The
refinements are:
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• references r are annotated with aliases a (written ra) to relate them to entries in
the runtime alias type store;

• recording the type of references in the runtime type store in rule (XSOS-PB-Ref);
and

• checking that assignments preserve types in rule (XSOS-PB-Assign).

In the rest of this chapter we use λcbv+ref to refer to the traditional semantics for
references given by the union of the extensible rule specifications for λcbv in Figure 5.2
on page 126, the rules for let in Figure 7.3 on page 150, and the rules for references
in Figure 7.7 on page 155. We use λ SB

cbv+ref to refer to the semantics given by these
rules, but using the rules in Figure 8.1 for references instead.

We shortly consider how to define abstraction functions for the refined semantics.
First, we state and prove two lemmas: one that relates refined evaluation for λ SB

cbv+ref
to ordinary evaluation for λcbv+ref, and one that proves that refined evaluation is de-
terministic up-to the runtime alias type stores (Lemma 8.2).

Lemma 8.1 (Refined evaluation is sound wrt. ordinary evaluation) Using ⇓SB to de-
note the refined evaluation relation for λ SB

cbv+ref, and ⇓REF to denote the semantics for
λcbv+ref, it holds that:

R ` e/S ⇓SB e′/S′ =⇒ erase(R ` e/S ⇓REF e′/S′)

where erase erases all alias annotations on references in all-sub-terms.

Proof. The proof is by straightforward rule induction.

Lemma 8.2 (Refined evaluation is deterministic up-to runtime alias type stores) The
following holds about λ SB

cbv+ref:

R ` e/S ⇓ e′/S′ =⇒ R ` e/S ⇓ e′′/S′′ =⇒ e′ = e′′ ∧ ∀Σ. S′[sto Σ] = S′′[sto Σ]

Proof. The proof is by straightforward rule induction on the first premise and inversion
on the second.

8.3.2 Typing and abstraction

We define the notion of typing and abstraction for store-based types. The set of typings
is given by:

Typing, TypeEnv×AliasTypeStore×Type×AliasTypeStore

The objective is to relate this set of typings to sets of denotations by means of an ab-
straction function. As before, we define an abstraction functions for each separate kind
of entity in typings: a value abstraction function αV and an environment abstraction
function, αR. Additionally, we introduce a store abstraction function, αS for relating
type-level and runtime type stores. We discuss each in turn, starting with store abstrac-
tion, since that is a novelty compared with earlier chapters.
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Abstract syntax (ΣSB
ref).

Expr 3 e ::= ref(e) | deref(e) | assign(e,e) | v
ValNS 3 v ::= ra

r ∈ Ref , {r1, r2, . . .}

a ∈ Alias, {a1,a2, . . .}

σ ∈ Store, Ref ×Alias fin−→ ValNS

Σ ∈ AliasTypeStore, Alias fin−→ Type

Auxiliary entities (CSB
ref).

CSB
ref , {(sto,CPREORDER(Store));(tsto,CPREORDER(AliasTypeStore))}

Terminal configurations. (None required)
Rule specification.

e ⇓ e′ ref(e′) ⇓ e′′

ref(e) ⇓ e′′
(XSOS-PB-Ref1)

r 6∈ dom(σ) T ∈ α SB
V (S[sto σ , tsto Σ],v)

ref(v)/S[sto σ ,tsto Σ] ⇓ ra
/S[sto σ [ra 7→v],tsto Σ[a7→T ]]

(XSOS-PB-Ref)

e ⇓ e′ deref(e′) ⇓ e′′

deref(e) ⇓ e′′
(XSOS-PB-Deref1)

r ∈ dom(σ)

deref(ra)/S[sto σ ] ⇓ σ(ra)/S[sto σ ]

(XSOS-PB-Deref)

e1 ⇓ e′1 assign(e′1,e2) ⇓ e′

assign(e1,e2) ⇓ e′
(XSOS-PB-Assign1)

e2 ⇓ e′2 assign(ra,e′2) ⇓ e′

assign(ra,e2) ⇓ e′
(XSOS-PB-Assign2)

r ∈ dom(σ) a ∈ dom(Σ) Σ(a) ∈ α SB
V (S[sto σ , tsto Σ],v)

assign(ra,v)/S[sto σ ,tsto Σ] ⇓ unit/S[sto σ [ra 7→v],tsto Σ]

(XSOS-PB-Assign)

Figure 8.1: Abbreviated pretty-big-step XSOS rules for references with refined seman-
tics for store-based typing
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Store abstraction. Using the refined evaluation relation from Figure 8.1, the store
abstraction function simply relates runtime alias type stores to themselves:

α
SB
S ∈ OS→ OZ

α
SB
S (S[tsto Σ]), Z[sto Σ]

Value abstraction. The interesting abstraction functions for values are those for clo-
sures and references. The main difference from the abstraction function for closures
in the previous chapter is that closures now record information about how evaluating
the body of the closure affects the store. The case for the closure is an adaptation of
the abstraction function from previous chapter, the only change being the additional re-
quirement that the annotation Σ on function arrows safely abstract the set of references
that are allocated when the function is called:

α
SB
V (S,〈x,e,ρ〉),

T1 _Σ T2

∣∣∣∣∣∣∣∣
∀R Z v1 S′. S� S′ =⇒ T1 ∈ α SB

V (S′,v1) =⇒
∃v2 S′′. (v2,S′′) ∈ DJeK(R[env ρ[x 7→ v1]])(S′) ∧

T2 ∈ α SB
V (S′′,v2) ∧

Z[sto Σ] = α SB
S (S′′.tsto−S′.tsto)


The abstraction function for stores captures the meaning of aliases. Thanks to our

use of a refined semantics, the abstraction function for references is relatively simple:

α
SB
V (S[tsto Σ],ra), {aref(T,a) | Σ(a) = T}

Environment abstraction. It only remains to define the environment abstraction
function, which is similar to the one from previous chapter:

α
SB
R (S,R),

{
G[env Ξ]

∣∣∣∣∀x ∈ dom(R.env).
x ∈ dom(Ξ) ∧ Ξ(x) 6= /0 ∧ Ξ(x)⊆ α SB

V (S,R.env(x))

}
Well-typedness of runtime stores. The abstraction function α SB

S relates runtime type
stores to alias type stores in the type system. It does not say anything about the well-
typedness of those runtime type stores, however. The following well-typedness property
checks two things: for every alias in the runtime type store there is a corresponding
annotated reference in the store, and vice versa; and all values in the store are typed
by the corresponding type in the type store:

wt(S) ⇐⇒ (∀a. (a ∈ dom(S.tsto) ⇐⇒ ∃r. ra ∈ dom(S.sto))) ∧
∀ra ∈ dom(S.sto). S.tsto(a) ∈ α SB

V (S,S.sto(ra)))

Preordering. The value abstraction function α SB
V above relies on a preordering of

states. As in previous chapter, the role of the preorder is to capture the fact that ex-
tended stores preserve well-typedness, and preserve the types of references:

S1� S2 ⇐⇒ (wt(S1) =⇒ wt(S2) ∧ (S1.tsto⊆ S2.tsto))

Lemma 8.3 shows that� is a preorder.
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Lemma 8.3 (� is reflexive and transitive)

(∀S. S� S) ∧
(
∀S S′ S′′. S� S′ =⇒ S′� S′′ =⇒ S� S′′

)
Proof. Both reflexivity and transitive follow straightforwardly from the definition of
�.

The preorder� satisfies Assumptions 7.2 and 7.3 from previous chapter, proven in
Lemmas 8.4 and 8.5.

Lemma 8.4 (λ SB
cbv+ref satisfies Assumption 7.2) The following holds for the refined

semantics, λ SB
cbv+ref:

R ` e/S ⇓ e′/S′ =⇒ S� S′

Proof. The proof is by straightforward rule induction on the evaluation relation.

Lemma 8.5 (λ SB
cbv+ref satisfies Assumption 7.3) The following holds for the refined

semantics, λ SB
cbv+ref:

T ∈ α
SB
V (S,v) =⇒ S� S′ =⇒ T ∈ α

SB
V (S′,v)

Proof. The proof is by structural induction on the structure of T , using the transitivity
of� for the closure case.

Thus equipped, we are ready to prove type soundness.

8.3.3 Type soundness

The soundness of store-based types is summarised by Theorem 8.6.

Theorem 8.6 The store-based type system in Figure 8.2 is type sound for λcbv+ref.

Proof. The proof is a direct consequence of Lemma 8.7 below and 8.1 (page 174).

Lemma 8.7 The store-based type system in Figure 8.2 is type sound for the refined
semantics in Figure 8.1 for λcbv+ref.

G ` e/Z : T/Z′ =⇒ G ∈ α SB
R (S,R) =⇒ Z ∈ α SB

S (S) =⇒
∃v S′. R ` e/S ⇓ v/S′ ∧ T ∈ α SB

V (S′,v) ∧Z′ ∈ α SB
S (S′)

Proof (sketch). The Coq formalisation accompanying this thesis provides an outline
which relies on an axiomatisation of the relationship between aliases and references, as
opposed to the annotation-based approach described above. The axiomatisation con-
sists in asserting that there exists a substitution which relates any reference to an alias
in the type store. This is equivalent to the abstraction function based on annotations.
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8. Type and Effect Inference using Types as Abstract Interpretations

Most cases of the proof follow by straightforward induction and the definition of
abstraction, well-typedness, preordering, and the fact that evaluation preserves types
(Lemmas 8.4 and 8.5). We highlight the central argument about polymorphism and
refer the reader to the Coq axiomatisation for the remaining details: http://cs.

swansea.ac.uk/~cscbp/xtss.zip.

Case (XSOS-PB-Let) The rules in Figure 8.2 permits polymorphic quantification in let-
expressions. The central argument of this case is similar to that considered in previous
chapters.

Recall the (unabbreviated) rule for let:

P 6= /0 (∀T1 ∈ P. G[env Ξ] ` e1/Z : T1/Z′) G[env Ξ[x 7→ P]] ` e2/Z′ : T2/Z′′

G[env Ξ] ` let x = e1 in e2/Z : T2/Z′′

The induction hypotheses are:

∀T1 ∈ P. ∀R S. wt(S) =⇒
G[env Ξ] ∈ α SB

R (S,R) =⇒
Z = α SB

S (S) =⇒
∃v1S′. R ` e1/S ⇓ v1/S′ ∧ T1 ∈ αV (S′,v1) ∧ Z′ = α SB

S (S′)

(IH1)

∀R S. wt(S) =⇒
G[env Ξ[x 7→ P]] ∈ α SB

R (S,R) =⇒
Z′ = α SB

S (S) =⇒
∃v S′. R ` e2/S ⇓ v/S′ ∧ T2 ∈ α SB

V (S′,v) ∧ Z′′ = αS(S′)

(IH2)

The goal is to find a configuration v1/S1 for which R ` e1/S⇒ v1/S1 , and which is typed
by all T ∈ P under Z1, where Z1 is the type store after inferring the type of the first
premise, i.e. G ` e1/Z : T1/Z1 . If we can show that a configuration exists which is typed
by all T ∈ P under Z2, the goal follows straightforwardly from the induction hypotheses
and Lemma 8.8 (below). The existence of such a configuration is proven as follows:

• Choose any T0 ∈ P.

• From the induction hypothesis, we get R ` e1/S ⇒ v1/S1 such that T0 ∈ αV (S1,v1)
and Z1 ∈ αS(S1). (H). We prove that this v1/S1 is typed by all T ∈ P

• For any T ′0 ∈ P, we can use (IH1) to obtain a proof of R ` e1/S ⇒ v′1/S′1
such that

T ′0 ∈ αV (S′1,v
′
1) and Z1 = αS(S′1).

• We know from Lemma 8.2 above that ⇓ is deterministic up-to-the runtime type
stores:

v1 = v′1 ∧ ∀Σ. S1[tsto Σ] = S′1[tsto Σ]

• Observe that the type stores of S1 and S′1 must be identical: since it holds that
Z1 = αS(S1) and also Z1 = αS(S′1), it must hold that:

Z1.sto = S1.tsto = S′1.tsto
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which in turn implies:

S1 = S′1

Thus, v1/S1 is typed by any T ∈ P.

The rest of the case follows from the induction hypotheses, Lemma 8.8, and this fact.

Lemma 8.8 (Abstraction preserves environment updates)

G[env Ξ] ∈ α SB
R (S,R[env ρ]) =⇒ P 6= /0 =⇒

∀T ∈ P. T ∈ α SB
V (v)) =⇒ G[env Ξ[x 7→ P]] ∈ α SB

R (S,R[env ρ[x 7→ v]])

Proof. Immediate from the definition of α SB
R .

8.4 Assessment and related work

This chapter considered a type system that tracks how evaluation affects the store
in a more fine-grained manner than traditional ML-style reference typing. We also
considered types as abstract interpretations as a means of proving the type system
sound. We assess the type system and its proof, and compare and contrast it with
previous lines of work.

8.4.1 Related type systems

We compare and contrast store-based types with related type systems in the literature.

Type and effect systems According to Henglein et al.:

Classical type systems express properties of values, not the computations
leading to those values. Effect types describe all important effects of com-
putation, not just their results.

The store-based type system considered in this chapter matches this description, but
there are several differences between store-based type systems considered here and
traditional type and effect systems in the literature [HMN04, NN99, TJ94, TT97, VJ95],
the main difference being how effects are recorded: usually, effects are more abstract
and record information such as which regions a program may affect, and such type
systems generally do not rely on a store at the type level for inhibiting generalisation.
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Alias types. The system this chapter proposes tracks the type of references in the store
in a similarly fine-grained manner to Morrisett et al.’s works on Alias Types [SWM00],
the Calculus of Capabilities [CWM99], and typed assembly language [Mor04]. The
main focus of these lines of work is type systems for low-level languages written in
continuation-passing style with explicit allocation of memory regions, where a region
is a memory fragment which binds certain locations of certain types. They provide poly-
morphism at three different levels: polymorphism over types, locations, and regions.
In their work, as in this chapter, polymorphism over types does not rely on restrictions
such as the value restriction, since the type system accurately records the state of the
current store. Our proposed reference type equality rule (XPZ-RefEq) appears to be
related to their type location polymorphism: our proposed rule allows us to exchange
any location with any other equivalent location, whereby all aliases implicitly become
polymorphic.

Other approaches to relaxing the value restriction. Wright [Wri95] provides an
overview of previous approaches to Hindley-Milner-Damas polymorphism in ML-like
languages [Dam84, Tof90, MTH89, LW91, Wri92]. Not covered by Wright is Garrigues
more recent work [Gar04], which uses a sub-typing based approach to relax the value
restriction by generalising type variables that occur only at covariant positions.

Other type systems with type-level stores. In recent work on Dependent Types for
JavaScript [CHJ12], Chugh et al. uses stores at the type level in a similar manner to
the type system presented here. Unlike us, Chugh et al.’s type system supports strong
updates, and uses dependent types for typing functions.

8.4.2 Types as abstract interpretations

The type soundness proof that this section recalled was an extension of the types as
abstract interpretations approach from previous chapters to deal with type and effect
systems. Many other authors have considered similar approaches to giving and proving
the correctness of type and effect systems.

Recently, Galletta [Gal14] presented an abstract interpretation framework for type
and effect systems. His framework is reminiscent of classical type and effect systems
[HMN04, NN99, TJ94, TT97, VJ95]. It is not clear if the framework translates to a type
system such as the one suggested here.

Viewing types as logical relations bears a lot of resemblance with viewing types
as abstract interpretations. Ahmed’s thesis [Ahm04] considers how to give meaning
to ML reference types using logical relations, and uses the logical relation for proving
type soundness. A significant difference between her approach and the one considered
here (i.e., due to Cousot [Cou97]) is that her work is based on a small-step semantics.
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8.4.3 Extensibility

The change from a classic type system approach to a type system involving effects
required us to change the structure of types and typing rules for functions and appli-
cations. Our abstraction functions and type soundness proof also changed somewhat
from ML reference types, the introduction of stores at the type level being the major
change. While it is reasonable to expect that both types, rules, and proofs change when
the fundamental meaning of types changes, perhaps one could have obtained a more
flexible approach to giving and reasoning about rules if such reasoning was based on
typings. If we could make types, typing relations and abstraction functions extensible
up to the notion of typing, we might obtain proofs that are more amenable to type
system extensions that go beyond classic type systems without considerable reformu-
lation. Wells [Wel02] and Jim [Jim96] both argue the importance and usefulness of
using typings as the basis for type systems and typing rules. Together with Mosses and
Sculthorpe, the author has considered a preliminary investigation of how this works
for a type system for dynamic scope [MSBP15]. It would be interesting to see how to
the use of typings, rather than types, affects the extensibility of proofs.
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In this thesis, we have studied how to specify and relate operational semantics at vari-
ous level of abstraction. Our thesis was:

Extensible transition system semantics provides a basis for giving and relating
extensible and purely structural semantics at different levels of abstraction.

We have confirmed this thesis by introducing extensible transitions system semantics as
a basis for giving both small-step and big-step specifications of programming language
semantics. Using the refocusing transformation, we proved that such small-step and
pretty-big-step XSOS specifications are equivalent. Using types as abstract interpreta-
tions, we showed how to prove big-step type soundness based on extensible transition
system semantics without artificial “wrong” transitions. Finally, we presented a novel
type system for Hindley/Milner style polymorphism by recording effects in a type-level
store. These contributions show that extensible transition system semantics provides a
basis for giving and relating purely structural semantics at different levels of abstraction
(big-step, small-step, and type systems).

This chapter recalls and assesses the main results and challenges in connection
with each of these contributions, and outlines interesting directions to pursue in future
research.

9.1 Extensible transition system semantics

Our main motivation for introducing and using extensible transition systems was to
provide a more straightforward way of dealing with abrupt termination in both small-
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step and big-step purely structural semantics. As illustrated and argued throughout this
thesis, XSOS achieves this goal by providing a unified way of expressing abrupt termi-
nation in both small-step and big-step semantics, such that rules for abrupt termination
can be given once-and-for-all in either style, and such that these provably correspond
to each other.

In order to represent abrupt termination and divergence in big-step semantics, we
use Charguéraud’s [Cha13] pretty-big-step style, which was introduced precisely to
minimise the duplication problem for semantics with abrupt termination and diver-
gence. Our pretty-big-step differs from Charguéraud’s in a number of ways, however:
notably, XSOS does not rely on abort rules for propagating abrupt termination or diver-
gence if it arises. Our XSOS rules instead relies on a predicate for indicating whether
configurations are final, such that we inhibit further computation for final configura-
tions, such as values, abrupt termination, or computations that were supposed to have
been executed after divergence has occurred. This means that we avoid the need to
introduce abort rules if we extend a language with abrupt termination or divergence.

Our use of predicates for distinguishing final configurations also motivated our use
of abbreviations in XSOS rules, in order to avoid having to write these out in rules al-
ways. Our abbreviations are inspired by Mosses and New’s I-MSOS framework [MN09].
We believe that all of the abbreviations we introduced in Chapter 3 could have been
formalised in a similar manner as Mosses and New’s I-MSOS framework. Such a for-
malisation would enable alternative interpretations of propagating auxiliary entities
between premises in rules, similar to [MN09, p. 61]. One might, for example, express
interleaving by adopting a different interpretation of how effects arising in different
premises of rules compose in terms of the underlying category. We expect that adapt-
ing I-MSOS to XSOS (or vice versa) should be relatively straightforward, due to the
close relationship between XTTS and Mosses’ GTTS [Mos04].

Mosses introduced MSOS as a solution to the modularity problem for SOS that is as
effective as monad transformers are for denotational semantics [Mos04]. Indeed, the
label propagation strategies in MSOS and abbreviations of I-MSOS exhibit a monadic
structure: MSOS read-only entities are analogous to the reader monad; read-write en-
tities are analogous to the state monad; and write-only entities are analogous to the
writer monad. This thesis introduced an additional entity, namely entities modelled
by the abrupt termination category (introduced in Section 3.5.1 of this thesis). As dis-
cussed in Chapter 3, using this category for abrupt termination is reminiscent of having
a sum-type, similar to the maybe monad, but with a minor twist that the ‘None’ of the
monad records the structure of the term in which abrupt termination occurred. This
twist is crucial for giving semantics for control constructs, following Sculthorpe et al.
[STM16] and Section 4.6 of this thesis.

Functional programming and denotational semantics recognises monads that per-
mit much more sophisticated yet modular ways of altering how control and data flows
in programs and semantics. Thus, it would be interesting to investigate the relationship
between monads and MSOS/XSOS further.

Such an investigation might provide insights that might permit big-step XSOS rules
to deal with interleaving and concurrency. Mosses [Mos04] suggests that composition
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in the underlying label category could be interpreted as a “shuffle” of the sequence
(trace) of label components that a computation visits. Mitchell [Mit94] showed that
this, indeed, provides a means of modelling concurrency using big-step semantics. The
approach models concurrency and non-determinism by listening for input via ports. A
big-step relation then generates the trace of inputs that leads to the value produced.
Uustalu [Uus13] generalises this take on modelling big-step semantics even further by
providing a relational representation of resumptions. Resumptions are a technique for
dealing with concurrency in denotational semantics [Plo76], whose monadic counter-
part is known as the resumption monad [PG14, HS00a, TA03]. Although the approach
to dealing with concurrency is very general, Uustalu’s [Uus13] big-step rules read quite
differently from big-step rules.

Although we provided a big-step semantics for delimited continuations in Sec-
tion 4.6, it is not obvious how suitable this semantics is for reasoning about delimited
continuations: most accounts of delimited continuations and call/cc in the literature
are based on small-step semantics. It would be interesting to compare/contrast the
pragmatic properties of small-step/big-step semantics for delimited continuations for
different kinds of proofs. Big-step semantics is, for example, easier to work with in
compiler correctness proofs. Is this true for semantics with continuations, too?

One of the main motivations behind this thesis was to provide techniques that apply
to give and relate extensible specifications of the semantics of funcons, developed as
part of the PLanCompS project. There are other lines of research that use (I-)MSOS
as the basis for semantic specification: DynSem [VNV15] and the Spoofax workbench
[VWT+14] uses a variant of (I-)MSOS as the basis for execution [VNV15] and verifica-
tion [VWT+14]. We expect that our formulation of refocusing, in particular, would be
relatively straightforward to adapt to DynSem rules.

9.2 Refocusing in XSOS

Chapter 4 presented an internalisation of Danvy and Nielsen’s transformation [DN04]
in XSOS, and the subsequent Chapter 5 shows how the rules resulting from refocus-
ing are amenable to reasoning about diverging computations as well as converging
computations. The internalisation adopted and adapted the correctness criteria from
[DN04], and provides a novel alternative to the correctness proof of Sieczkowski et
al. [SBB11]. Sieczkowski et al.’s proof is based on an axiomatisation of reduction se-
mantics. In contrast, our proof is based on a rule scheme that generalises well-known
proof methods for relating small-step and big-step semantics from the literature on SOS
[Nip06, LG09, NK14, Cio13, PCG+13].

It is well-known that reduction semantics and structural operational semantics are
closely related, in particular for context-insensitive rules [Dan04, Dan08]. Our moti-
vation for internalising the framework of XSOS in this thesis was our interest in apply-
ing the transformation to small-step XSOS rules for funcons to derive (pretty-)big-step
XSOS rules, where many of the small-step XSOS rules are context-sensitive, in that they
crucially rely on the propagation of auxiliary entities in rules (such as environments).
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One might have side-stepped such issues by using Curien’s framework for explicit sub-
stitutions [Cur91, ACCL91]. Biernacka and Danvy [BD07] investigate this approach in
their syntactic correspondence, where they show how to refocus a reduction seman-
tics based on explicit substitutions, and end up with an environment-based abstract
machine. One might also have expressed the semantics by means of context-sensitive
rules that satisfy the correctness criteria given by Sieczkowsi et al. An additional arti-
fact resulting from such an adaptation would be a reduction semantic representation
for funcons, which could be useful in its own right. We leave an exploration of this
direction to future work.

Danvy et al.’s work focuses mainly on functional representations of reduction se-
mantics and abstract machines. Working with such representations is somewhat chal-
lenging in theorem provers, such as Coq or Agda, where functions must either be guar-
anteed to terminate (structurally decreasing on input), or guaranteed to be productive
(structurally increasing on output). One way of avoiding this is to introduce a “clock”
in functions, which trivially decreases with each recursive call. Recently, Dubois et al.
[TDD12] investigates how to automatically derive such functional representations from
inductive specifications in Coq. Ramana et al. use a similar technique for expressing
and reasoning about CakeML, a verified implementation of ML [KMNO14] in the proof
assistant HOL4.1

9.3 Types as abstract interpretations

Chapter 6 considered a straightforward adaptation to SOS of Cousot’s types as abstract
interpretations [Cou97]. This allowed us to prove type soundness and strong normal-
isation in one fell swoop. The technique only works because we were working with
a deterministic language, however. For non-deterministic languages, the type sound-
ness statement used in that chapter is too weak. The type soundness property can be
summarised as: “if we can infer that the program is well-typed, then there exists a
value to which the program evaluates, and which has the expected type”. But if the
program is non-deterministic, the existence of a trace that leads to a value of the right
type does not imply that there are no traces which go wrong. For such semantics, one
has to resort to different means of proving type soundness, such as a more traditional
preservation-style proof using a semantics with explicit “wrong” transitions.

For deterministic and strongly normalising languages, however, types as abstract
interpretations provides a simple and straightforward way of proving both type sound-
ness and strong normalisation.

Our Coq encoding of abstraction functions are expressed as functions that are struc-
turally decreasing on types. This naturally only works for finite types. It is not clear if it
is possible to represent and work with infinite types in Coq using types as abstract inter-
pretations in an equally straightforward way. This would be interesting to investigate
further. A related research question is whether the types as abstract interpretations

1http://hol.sourceforge.net
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approach considered in Chapter 6 of this thesis is a useful means of calculating (in the
sense of Bahr and Hutton [BH15]) calculi that satisfy strong normalisation?

9.4 Modular big-step type soundness

One of the questions we asked ourselves in Chapter 6 was whether types as abstract
interpretations provides a feasible means of giving extensible proofs of type sound-
ness. Our study does not provide a clear-cut answer to this question. While the type
soundness statement does not change as we extend our language, the proof that we
gave relied on an instrumented semantics, and one that relies on a mutual dependency
between the abstraction functions and the semantics, which we axiomatised in Coq.

As for the mutual dependency, we expect that it is not so severe as it may ap-
pear: the relation and function appears to be an instance of induction-recursion [Dyb00,
DS06, GMNF13], which is known to be consistent.

9.5 Type and effect soundness

Chapter 8 provides a novel type system for Hindley-Milner-Damas polymorphism in
the presence of references. We also provided a proof based on an axiomatisation in
Coq, where both the mutual dependence between semantics/abstraction function is
axiomatised, but also the relationship between type-level aliases and actual runtime
references. The axiomatisation consists of an axiom in Coq saying that there is a sub-
stitution which maps any references to its corresponding alias such that every reference
that occurs in the store is mapped to an alias in the type-level store; and, conversely,
every alias in the type-level store is mapped to one or more references.

We do expect it to be straightforward to replace the axiomatisation with the refined
semantics based on annotated references in Section 8.3.1, instead of the axiomatisation
that is in our current Coq proof. We do not expect this to change the structure of the
proof substantially. We leave it to future work to verify this.

Besides analysing the relationship between store-based types and previous approa-
ches for dealing with types and effects for Hindley-Milner-Damas type systems outlined
in Section 8.4, an interesting question in connection with the store-based type system
in Chapter 8 is whether it is sound to translate store-based types to ML-style reference
types [MTHM97].

9.6 Conclusion

This thesis studied how to specify, relate, and work with operational semantics that
support language evolution at different levels of abstraction, focusing particularly on
purely structural operational semantics, i.e., semantics without any explicit syntactic
representation of program context. We proposed a simple but novel variant of Mosses’
generalised transition systems [Mos04] that we called extensible transition systems. Our
thesis was:

187



9. Discussion and Future Directions

Extensible transition system semantics provides a basis for giving and relating
extensible and purely structural semantics at different levels of abstraction.

Chapters 3 through to 8 shows that extensible transition system semantics provides a
basis for giving and relating extensible and purely structural small-step and big-step
semantics, as well as type (and effect) systems. We also considered types as abstract
interpretations as an interesting proof method for big-step type soundness without
explicit “wrong” transitions.

Extensible transition system semantics provides a means of specifying, once-and-
for-all, a variety of different language features, including applicative and imperative
features, abrupt termination, divergence, and even continuations. Such semantics have
provably corresponding small-step and big-step interpretations. In the process of ex-
ploring extensible transition system semantics, we have seen a number of techniques
that might be useful for other settings, including a generalised proof method for re-
lating diverging computations in small-step and big-step SOS (Chapter 5), and using
types as abstract interpretations for a direct simultaneous proof of strong type sound-
ness and strong normalisation. Future work includes investigating the correspondence
between XSOS and reduction semantics, investigating the mutual dependency used
in our instrumented semantics for ML references, and investigating store-based types
further.
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A Proofs for Chapter 2

This appendix contains proofs of various propositions recalled in the background chap-
ter of this thesis, and specifically Section 2.4. The proofs are all about the λcbv lan-
guage, using the small-step relations (→,

∞−→) defined in Sections 2.2.2 and 2.2.4, and
the big-step relations (⇒,

∞
=⇒) defined in Sections 2.4.2 and 2.4.4.

All of the proofs follow a similar structure to those of Leroy and Grall [LG09].
Unlike Leroy and Grall who study a semantics based on meta-level substitution, the
semantics we study here is based on semantics with environments. Furthermore, the
semantics we study use two different term and value universes for the small-step and
big-step relations. This entails some extra plumbing in the proofs. Chapters 4 and
5 consider refocused extensible XSOS rules, whose correctness is proven using gen-
eralised versions of Leroy and Grall’s proofs. The proofs presented in these chapters
essentially provide an automatic way of relating small-step and big-step semantics with-
out all the tedious proof plumbing used in this appendix.

A.1 Expression sorts

The relations→,⇒ rely on two different expression sorts:

Natural semantic syntax

ExprNS 3 e ::= plus(e,e) | num(n)
| λx.e | e e | x

ValNS 3 v ::= n | 〈x,e,ρ〉

ρ ∈ EnvNS , Var→ ValNS

SOS syntax

Expr 3 e ::= plus(e,e) | v
| λx.e | e e | x

Val 3 v ::= n | 〈x,e,ρ〉

ρ ∈ Env, Var→ Val

We relate the two semantics by defining a big-step relation operating on the SOS
syntax instead of the natural semantic syntax. We use ‘⇒’ and ‘ ∞

=⇒’ to refer to the natural
semantic big-step relations from Section 2.4.2 and 2.4.4; and S

=⇒ and S∞
=⇒ to refer to the

big-step relation operating on SOS syntax instead. Figures A.1 and A.2 define these
relations.

The S
=⇒ and S∞

=⇒ relations correspond to ⇒ and ∞
=⇒. In order to prove this, we

first define some simple auxiliary predicates: source( ),vsource( ), rsource( ) identify
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A. Proofs for Chapter 2

ρ ` v S
=⇒ v

(SNS-λcbv-Refl)

ρ ` e1
S
=⇒ n1 ρ ` e2

S
=⇒ n2

ρ ` plus(e1,e2)
S
=⇒ n1 +n2

(SNS-λcbv-Plus)

ρ ` λx.e S
=⇒ 〈x,e,ρ〉

(SNS-λcbv-Lam)

ρ ` e1
S
=⇒ 〈x,e,ρ ′〉 ρ ` e2

S
=⇒ v2 ρ ′[x 7→ v2] ` e S

=⇒ v

ρ ` e1 e2
S
=⇒ v

(SNS-λcbv-App)

x ∈ dom(ρ)

ρ ` x S
=⇒ ρ(x)

(SNS-λcbv-Var)

Figure A.1: Natural semantics for converging computations of λcbv with SOS syntax

ρ ` e1
S∞
=⇒

ρ ` plus(e1,e2)
S∞
=⇒

(SNS-λcbv-∞-Plus1)

ρ ` e1
S
=⇒ n ρ ` e2

S∞
=⇒

ρ ` plus(e1,e2)
S∞
=⇒

(SNS-λcbv-∞-Plus2)

ρ ` e1
S∞
=⇒

ρ ` e1 e2
S∞
=⇒

(SNS-λcbv-∞-App1)

ρ ` e1
S
=⇒ 〈x,e,ρ ′〉 ρ ` e2

S∞
=⇒

ρ ` e1 e2
S∞
=⇒

(SNS-λcbv-∞-App2)

ρ ` e1
S
=⇒ 〈x,e,ρ ′〉 ρ ` e2

S
=⇒ v2 ρ ′[x 7→ v2] ` e S∞

=⇒
ρ ` e1 e2

S∞
=⇒

(SNS-λcbv-∞-App3)

Figure A.2: Natural semantics for diverging computations of λcbv with SOS syntax
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A.1. Expression sorts

subsets of SOS syntax expressions, values, and environments which correspond to
natural semantic expressions, values, and environments. We also define relations
nsify( ),vnsify( ), rnsify( ) that map SOS syntax expressions, values, and environments
to natural semantic expressions, values, and environments.

Definition A.1 Let source⊆ Expr be a predicate that identifies source programs, defined
as follows, where we write source(e) for e ∈ source:

source(plus(e1,e2)) if source(e1) and source(e2)

source(n)

source(λx.e) if source(e)

source(e1 e2) if source(e1) and source(e2)

source(x)

Let vsource ⊆ Val be a predicate that identifies values resulting from evaluating source
programs, defined as follows, where we write vsource(v) for v ∈ vsource:

vsource(n)

vsource(〈x,e,ρ〉) if source(e) and rsource(ρ)

Let rsource ⊆ Env be a predicate that identifies environments whose values are all in
vsource:

rsource(ρ) if ∀x ∈ dom(ρ). vsource(ρ(x))

Definition A.2 Let nsify ∈ Expr→ ExprNS translate SOS syntax terms to natural seman-
tic expressions:

nsify(plus(e1,e2)) = plus(nsify(e1),nsify(e2))

nsify(n) = num(n)

nsify(〈x,e,ρ〉) = num(0)

nsify(λx.e) = λx.e

nsify(e1 e2) = nsify(e1)nsify(e2)

nsify(x) = x

Let vnsify ∈ Val→ ValNS translate SOS syntax values to natural semantic values:

vnsify(n) = n

vnsify(〈x,e,ρ〉) = 〈x,nsify(e), rnsify(ρ)〉
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Let rnsify ∈ Env→ EnvNS translate SOS syntax environments to natural semantic envi-
ronments:

rnsify(ρ) = {x 7→ vnsify(ρ(x)) | x ∈ dom(ρ)}

Here, nsify translates closures to the natural number ‘0’; since closures are not
source terms, they are irrelevant for the properties we now prove.

A.2 Correspondence between converging computations

Lemma A.3 ( S
=⇒ corresponds to⇒) It holds that:

rsource(ρ) =⇒ source(e) =⇒(
rnsify(ρ) ` nsify(e) S

=⇒ vnsify(v) ⇐⇒ ρ ` e⇒ v
)

Proof. Each direction is proven by rule induction. For the ⇒-to- S
=⇒ direction, the only

interesting case is that for the application, (NS-λcbv-App). The rest follow straight-
forwardly from the induction hypothesis, the compositional nature of nsify, and the
definitions of vnsify, rnsify.

Case (NS-λcbv-App) From the goal, (NS-λcbv-App) and the definition of source, we
have:

rsource(ρ) (H1)

source(e1) (H2)

source(e2) (H3)

From the induction hypothesis, we have:

rsource(ρ) =⇒ source(e1) =⇒

rnsify(ρ) ` nsify(e1)
S
=⇒ vnsify(〈x,e,ρ ′〉) (IH1)

rsource(ρ) =⇒ source(e2) =⇒

rnsify(ρ) ` nsify(e2)
S
=⇒ vnsify(v2)

(IH2)

rsource(ρ ′[x 7→ v2]) =⇒ source(e) =⇒

rnsify(ρ ′[x 7→ v2]) ` nsify(e) S
=⇒ vnsify(v)

(IH3)

The goal is:

rnsify(ρ) ` nsify(e1 e2)⇒ vnsify(v) (Goal)

The hypotheses for (IH1) and (IH2) are trivially satisfied. In order to satisfy the hy-
potheses for (IH3), we apply Lemma A.4 (see below) to (IH1) and (IH2). The goal
now follows straightforwardly.
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The S
=⇒-to-⇒ direction of the proof is equally straightforward.

Lemma A.4 (Source is preserved by evaluation) It holds that:

rsource(ρ) =⇒ source(e) =⇒ ρ ` e S
=⇒ v =⇒ vsource(v)

Proof. The proof is by rule induction on S
=⇒. Each case follows straightforwardly from

the induction hypotheses, and from the definitions of rsource,source,vsource.

Lemma A.5 ( S∞
=⇒ corresponds to ∞

=⇒) It holds that:

source(e) =⇒
(
nsify(e) S∞

=⇒ ⇐⇒ e ∞
=⇒
)

Proof. The proof of each direction is by coinduction, and follows along the same line
of reasoning as Lemma A.3. The proof also uses this lemma in order to relate the
converging branches for S∞

=⇒ and ∞
=⇒.

Lemma A.6 ( S
=⇒ implies→∗) It holds that:

ρ ` e S
=⇒ v =⇒ ρ ` e→∗ v

Proof. The proof proceeds by rule induction on S
=⇒. The simple rules follow trivially.

The rest follow straightforwardly from the congruence of →∗ proven in Lemma A.7
below. We show the case for plus. The rest are analogous.

Case (SNS-λcbv-Plus) We have as induction hypotheses:

ρ ` e1→∗ n1 (IH1)

ρ ` e2→∗ n2 (IH2)

The goal is:
ρ ` plus(e1,e2)→∗ n1 +n2 (Goal)

By transitivity of→∗, the (Goal) holds exactly when:

ρ ` plus(e1,e2)→∗ plus(n1,e2) (Goal1)

ρ ` plus(n1,e2)→∗ plus(n1,n2) (Goal2)

ρ ` plus(n1,n2)→∗ n1 +n2 (Goal3)

The first two goals follow from Lemma A.7 and the induction hypotheses. The last goal
follows from (Trans), (SOS-λcbv-Plus), and (Refl)
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Lemma A.7 (Congruence of→∗) It holds that:

(a) ρ ` e1→∗ e′1 =⇒ ρ ` plus(e1,e2)→∗ plus(e′1,e2)

(b) ρ ` e2→∗ e′2 =⇒ ρ ` plus(e1,e2)→∗ plus(e′1,e2)

(c) ρ ` e1→∗ e′1 =⇒ ρ ` e1 e2→∗ e′1 e2

(d) ρ ` e2→∗ e′2 =⇒ ρ ` 〈x,e,ρ ′〉e2→∗ 〈x,e,ρ ′〉e′2
(e) ρ ′[x 7→ v2] ` e→∗ e′ =⇒ ρ ` 〈x,e,ρ ′〉v2→∗ 〈x,e′,ρ ′〉v2

Proof. Each of the properties above follow by the same line of reasoning. We consider
the case for property (a); the rest are analogous. The proof proceeds by rule induction
on→∗.

Case (Refl) The goal follows trivially.

Case (Trans) We have as a hypotheses:

ρ ` e1→ e′1 (H1)

ρ ` e′1→∗ e′′1 (H2)

The induction hypothesis gives:

ρ ` plus(e′1,e2)→∗ plus(e′′1,e2) (IH)

The goal is:
ρ ` plus(e1,e2)→∗ plus(e′′1,e2) (Goal)

By transitivity of→∗, we get the two goals:

ρ ` plus(e1,e2)→∗ plus(e′1,e2) (Goal1)

ρ ` plus(e′1,e2)→∗ plus(e′′1,e2) (Goal2)

(Goal1) follows by applying (Trans), (SOS-λcbv-Plus1), H1, and (Refl). (Goal2) follows
from the induction hypothesis.

Lemma A.8 (→∗ implies S
=⇒) It holds that:

ρ ` e→∗ v =⇒ ρ ` e S
=⇒ v

Proof. The proof follows by induction on→∗ and by Lemma A.9 below.

Lemma A.9 (Small step and S
=⇒ can be fused to big step) It holds that:

ρ ` e→ e′ =⇒ ρ ` e′ S
=⇒ v =⇒ ρ ` e S

=⇒ v
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Proof. The proof is by rule induction on→. The cases all follow a similar structure; we
consider the case for (SNS-λcbv-Plus).

Case (SNS-λcbv-Plus) From the goal we have the following hypotheses:

ρ ` e1→ e′1 (H1)

ρ ` plus(e′1,e2)
S
=⇒ v (H2)

From the induction hypothesis we have:

∀v1. ρ ` e′1
S
=⇒ v1 =⇒ ρ ` e1

S
=⇒ v2 (IH)

The goal is:
ρ ` plus(e1,e2)

S
=⇒ v (Goal)

By inversion on (H2), we get:

ρ ` e′1
S
=⇒ n1 (H3)

ρ ` e2
S
=⇒ n2 (H4)

v = n1 +n2 (H5)

The goal follows from rule (SNS-λcbv-Plus), (IH), (H3), (H4), and (H5).

A.3 Correspondence between diverging computations

In order to prove Lemma A.11 below, we introduce a slight variant of the small-step
semantics for λcbv from Figure 2.6 on page 21. The motivation for this variation is
motivated by Lemma A.11 below: the non-compositional nature of the application rule
means that induction alone is not sufficient for the proof. In comparison, Leroy and
Grall’s [LG09] small-step rules do not have the same defect, since their small-step rules
are compositional, due to using substitution instead of environments.

The variation between the semantics for λcbv from Figure 2.6 on page 21 and the
one we are about to introduce consists in replacing application with two constructs,
app and force:

ExprF 3 e ::= . . . | λx.e | app(e,e) | force(x,v,ρ,e) | x Expressions

ValF 3 v ::= . . . | 〈x,e,ρ〉 Values

x,y ∈ Var , {x,y, . . .} Variables

ρ ∈ EnvF , Var fin−→ ValF Environments
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We let the semantics of this updated syntax be given by all rules for λcbv from Figure 2.6
on page 21, except we replace the rules for application by the following:

ρ ` e1→F e′1
ρ ` app(e1,e2)→F app(e′1,e2)

(SOS-λcbv-App1′)

ρ ` e2→F e′2
ρ ` app(〈x,e,ρ ′〉,e2)→F app(〈x,e,ρ ′〉,e′2)

(SOS-λcbv-App2′)

ρ ` app(〈x,e,ρ ′〉,v2)→F force(x,v,ρ ′,e)
(SOS-λcbv-AppF)

ρ ′[x 7→ v] ` e→F e′

ρ ` force(x,v,ρ ′,e)→F force(x,v,ρ ′,e′)
(SOS-λcbv-Force1)

ρ ` force(x,v0,ρ
′,v)→F v

(SOS-λcbv-Force)

It is easily seen that the transition relation →F for the λcbv semantics with app

and force is equivalent to the original transition relation → for λcbv: for any step we
can make using →, we can make either one or two steps using →F to end up in an
equivalent configuration (two steps in case of application, such that each semantics
does a single step inside the body of the function being applied); and vice versa, if→F

does two steps, or one step that results in a value, we do either two steps or one step
using→ to end up in an equivalent configuration (one step whenever we either make
a transition to a value, or one step in the case of application, such that each semantics
only does a single step inside the body of the function being applied).

Let f2e be a function that translates any e ∈ ExprF to an e ∈ Expr:

f2e ∈ ExprF→ Expr

f2e(app(e1,e2)), f2e(e1) f2e(e2)

f2e(force(x,v,ρ,e)), f2e(〈x,e,ρ〉) f2v(v)

f2e(plus(e1,e2)), plus(f2e(e1), f2e(e2))

f2e(λx.e), λx.f2e(e)

f2e(v), f2v(v)

f2v ∈ ValF→ Val

f2v(〈x,e,ρ〉, 〈x, f2e(e), f2r(ρ)〉

f2v(n), n

f2r ∈ EnvF→ Env

f2r(ρ), {x 7→ f2v(ρ(x)) | x ∈ dom(ρ)}

As argued above, if we can prove f2r(ρ) ` f2e(e) S∞
=⇒ =⇒ ρ ` e ∞−→F

, where ∞−→F
is the

infinite closure of→F, it also holds that ρ ` e S∞
=⇒ =⇒ ρ ` e ∞−→.

Lemma A.10 ( S∞
=⇒ implies ∞−→) It holds that:

ρ ` e S∞
=⇒ =⇒ ρ ` e2f(e) ∞−→F
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Proof. The proof is by coinduction, using the goal as coinduction hypothesis. The proof
follows by (TransInf) and Lemma A.11 below.

Lemma A.11 ( ∞
=⇒ can be broken up into smaller steps) It holds that:

f2r(ρ) ` f2e(e) S∞
=⇒ =⇒ ∃e′. ρ ` e→F e′ ∧ f2r(ρ) ` f2e(e′) S∞

=⇒

Proof. The proof is by structural induction on e and inversion on S∞
=⇒. Even though the

proof is by induction on e, we consider cases for S∞
=⇒, since we do inversion on this

relation. The cases follow a similar structure. We consider the cases for (SNS-λcbv-
∞-Plus1), (SNS-λcbv-∞-Plus2), and (SNS-λcbv-∞-App3). The remaining cases follow by
similar reasoning.

Case (SNS-λcbv-∞-Plus1) The induction hypothesis gives us:

∃e′1. ρ ` e1→ e′1 ∧ f2r(ρ) ` f2e(e′1)
S∞
=⇒ (IH1)

The goal is:

∃e′. ρ ` plus(e1,e2)→ e′ ∧ f2r(ρ) ` f2e(e′) S∞
=⇒ (Goal)

The goal follows by instantiating e′ as plus(e′1,e2), and by (IH1), rule (SOS-λcbv-Plus1),
the definition of f2e, and rule (SNS-λcbv-∞-Plus1).

Case (SNS-λcbv-∞-Plus2) From the rule (SNS-λcbv-∞-Plus2) and the definition of f2e
we have:

f2r(ρ) ` f2e(e1)
S
=⇒ n1 (H1)

f2r(ρ) ` f2e(e2)
S∞
=⇒ (H2)

The induction hypothesis gives us:

∃e′2. ρ ` e2→ e′2 ∧ f2r(ρ) ` f2e(e′2)
S∞
=⇒ (IH2)

The goal is:

∃e′. ρ ` plus(e1,e2)→ e′ ∧ f2r(ρ) ` f2e(e′) S∞
=⇒ (Goal)

From Lemma A.6, (H1), and the correspondence between→ and→F, it follows that:

ρ ` e1→F* n1 (H3)

By inversion on (H3), it either holds that:

• e1 has a transition step, in which case the goal follows from this fact, Lemma A.8,
and (H2);
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• e1 = n1, in which case the goal follows from (IH2).

Case (SNS-λcbv-∞-App3) Since we are doing structural induction on e ∈ ExprF, there
are really two different cases to consider for (SNS-λcbv-∞-App3): either e = app(e1,e2)
for some e1,e2, or e = force(x,v,ρ,e′) for some x,v,ρ,e′.

Subcase (e = app(e1,e2)) From the rule (SNS-λcbv-∞-App3) we have:

f2r(ρ) ` f2e(e1)
S
=⇒ 〈x,e,ρ ′〉 (H1)

f2r(ρ) ` f2e(e2)
S
=⇒ v2 (H2)

ρ
′[x 7→ v2] ` e S∞

=⇒ (H3)

The induction hypothesis gives us:

∃e′1. ρ ` e1→ e′1 ∧ f2r(ρ) ` f2e(e′1)
S∞
=⇒ (IH1)

∃e′2. ρ ` e2→ e′2 ∧ f2r(ρ) ` f2e(e′2)
S∞
=⇒ (IH2)

The goal is:

∃e′. ρ ` app(e1,e2)→ e′ ∧ f2r(ρ) ` f2e(e′) S∞
=⇒ (Goal)

From Lemma A.6, (H1), and the correspondence between→ and→F, it follows that:

ρ ` e1→F* 〈x,e,ρ ′〉 (H4)

By inversion on (H4), it either holds that e1 has a transition step, in which case the
goal follows from this fact, Lemma A.8, (H2), and (H3); or f2e(e1) = 〈x,e,ρ ′〉. In the
latter case, we proceed by similar reasoning on (H2): from Lemma A.6, (H2), and the
correspondence between→ and→F, it follows that:

ρ ` e2→F* v2 (H5)

By inversion on (H5), it either holds that e2 has a transition step, in which case the
goal follows from (SNS-λcbv-Refl), this fact, Lemma A.8, and (H3); or f2e(e2) = v2. In
the latter case, the goal follows from (SOS-λcbv-AppF), the definition of f2e, (SNS-λcbv-
∞-App3), and (H3).

Subcase (e = force(x,ρ ′,v,e′)) From the rule (SNS-λcbv-∞-App3) we have:

f2r(ρ) ` f2e(e1)
S
=⇒ 〈x,e,ρ ′〉 (H1)

f2r(ρ) ` f2e(e2)
S
=⇒ v2 (H2)

ρ
′[x 7→ v2] ` e S∞

=⇒ (H3)
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Since f2e is surjective (Lemma A.12), the following hypotheses follow from (H1-H3):

f2r(ρ) ` f2e(e1)
S
=⇒ f2v(〈x,e,ρ ′〉) (H1′)

f2r(ρ) ` f2e(e2)
S
=⇒ f2v(v2) (H2′)

f2r(ρ ′[x 7→ v2]) ` f2e(e) S∞
=⇒ (H3′)

From the induction hypothesis we get:

∀ρ0. ∃e′′. ρ0 ` e′→ e′′ ∧ f2r(ρ0) ` f2e(e′′) S∞
=⇒ (IH)

From this it follows that:

ρ
′[x 7→ v] ` e′→ e′′ ∧ f2r(ρ ′[x 7→ v]) ` f2e(e′′) S∞

=⇒ (IH′)

The goal is:

∃e′′.ρ ` force(x,ρ ′,v,e′)→ e′′∧ f2r(rho) ` f2e(e′′) S∞
=⇒ (A.1)

The goal follows by instantiating e′′ to force(x,ρ ′,v,e′), (IH′), the definition of f2e,
(H1′), and (H2′).

Lemma A.12 f2e is a surjective function from ExprF to Expr.

Proof. Trivial, by definition of f2e.

Lemma A.13 ( ∞−→ implies S∞
=⇒) It holds that:

ρ ` e ∞−→ =⇒ ρ ` e S∞
=⇒

Proof (classical). The proof is by guarded coinduction, using the goal as coinduction
hypothesis. We reason by case analysis on e. Each case follows by similar reasoning
steps. We show these steps for plus. The rest of the cases either follow trivially (by con-
tradiction, e.g., for simple rules that obviously converge), or follow a similar pattern.

Case (plus(e1,e2)) We have the following hypothesis and goal:

ρ ` plus(e1,e2)
∞−→ (H1)

ρ ` plus(e1,e2)
S∞
=⇒ (Goal)

We reason by case analysis on whether e1 diverges or not using Lemma A.14 below.
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Subcase (Convergence) From the case analysis on Lemma A.14, we get:

ρ ` e1→∗ e′1 (H2)

ρ ` e′1 6→ (H3)

By applying Lemma A.15 on (H1) and (H2), we get:

ρ ` plus(e′1,e2)
∞−→ (H4)

It must be the case that e′1 is some natural number n1, or (H4) would be a contradiction.
We have:

ρ ` plus(n1,e2)
∞−→ (H4′)

The goal follows by applying (SNS-λcbv-∞-Plus1), Lemma A.8, (H2), the coinduction
hypothesis, and (H4).

Lemma A.14 (Small-step either converges or diverges) It holds that:(
∃e′. ρ ` e→∗ e′ ∧ R ` e′/S′ 6→

)
∨ R ` e/S

∞−→

Proof (classical). The proof is analogous to the one given by Leroy and Grall [LG09,
Lemma 10]: we first show (∀e′. ρ ` e→∗ e′ =⇒ ∃e′′. ρ ` e′→ e′′) =⇒ ρ ` e ∞−→ by guarded
coinduction. The goal follows by reasoning by the law of excluded middle on ∞−→ and
this fact. An analogous proof is provided in Chapter 5 of this thesis (Lemma 5.2).

Lemma A.15 (Congruence of ∞−→) It holds that:

(a) ρ ` e1→∗ e′1 =⇒ ρ ` plus(e1,e2)
∞−→ =⇒ plus(e′1,e2)

∞−→

(b) ρ ` e2→∗ e′2 =⇒ ρ ` plus(n1,e2)
∞−→ =⇒ plus(n1,e′2)

∞−→

(c) ρ ` e1→∗ e′1 =⇒ ρ ` e1 e2
∞−→ =⇒ ρ ` e′1

∞−→

(d) ρ ` e2→∗ e′2 =⇒ ρ ` 〈x,e,ρ〉e2 =⇒ ρ ` 〈x,e,ρ〉e′2
∞−→

(e) ρ ′[x 7→ v2] ` e→∗ e′ =⇒ ρ ` 〈x,e,ρ ′〉v2 =⇒ ρ ` 〈x,e′,ρ ′〉v2

Proof. The proofs have a similar structure. We show the proof for property (a) and (e);
the rest are analogous.

Case (Proof of (a))

Subcase (Refl) Trivial.
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Subcase (Trans) From (Trans) and the goal, we have:

ρ ` e1→ e′1 (H1)

ρ ` plus(e1,e2)
∞−→ (H2)

From the induction hypothesis we have:

ρ ` plus(e′1,e2)
∞−→ =⇒ ρ ` plus(e′′1

∞−→ (IH)

The goal is:
ρ ` plus(e′′1,e2)

∞−→ (Goal)

By inversion on ∞−→ and subsequently→ in (H2) we get:

ρ ` e1→ e′′′1 (H2′)

ρ ` plus(e′′′1 ,e2)
∞−→ (H2′′)

Since→ is deterministic, we get:

ρ ` e1→ e′1 (H2′′′)

ρ ` plus(e′1,e2)
∞−→ (H2′′′′)

The goal follows from the induction hypothesis and (H2′′′′).

Case (Proof of (e)) The proof is by rule induction on→∗.

Subcase (Refl) Trivial.

Subcase (Trans) From (Trans) and the goal, we have:

ρ
′[x 7→ v2] ` e→ e′ (H1)

ρ ` 〈x,e,ρ ′〉v2
∞−→ (H2)

From the induction hypothesis we have:

ρ ` 〈x,e′,ρ ′〉v2
∞−→ =⇒ ρ ` 〈x,e′′,ρ ′〉v2

∞−→ (IH)

The goal is:
ρ ` 〈x,e′′,ρ ′〉v2

∞−→ (Goal)

By inversion on ∞−→ and subsequently→ in (H2) we get:

ρ
′[x 7→ v2] ` e→ e′′′ (H2′)

ρ
′[x 7→ v2] ` e′′′ ∞−→ (H2′′)

Since→ is deterministic, we get:

ρ
′[x 7→ v2] ` e→ e′ (H2′′′)

ρ
′[x 7→ v2] ` e′ ∞−→ (H2′′′′)

The goal follows from the induction hypothesis and (H2′′′′).
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Lemma A.16 (Determinism of→) It holds that:

ρ ` e→ e′ =⇒ ρ ` e→ e′′ =⇒ e′ = e′′

Proof. Straightforward proof by rule induction on→ for the first hypothesis.

Now, the proof of the main property of interest follows:

Proposition 2.7 ( ∞
=⇒ corresponds to ∞−→ for λcbv) The natural semantics and SOS for

λcbv describe the same set of diverging terms; i.e.:

source(e) =⇒ rsource(ρ) =⇒
(
rnsify(ρ) ` nsify(e) ∞

=⇒ ⇐⇒ ρ ` e ∞−→
)

where source(e), rsource(ρ) checks that expressions e ∈ Expr and ρ ∈ Env have corre-
sponding natural semantic source terms and environments; and nsify ∈ Expr→ ExprNS

and rnsify ∈ Env→ EnvNS translates SOS syntax to natural semantics syntax.

Proof. Each direction of the proof follows from Lemma A.5, and Lemma A.10 and A.13
above.
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B Proofs for Refocusing in XSOS

This appendix contains proofs that are not in the Coq development accompanying this
thesis. Section B.1 of this appendix contains proofs for relating finite computations
for small-step and big-step XSOS (Chapter 4), while Section B.2 contains proofs for
relating infinite computations for small-step and big-step XSOS (Chapter 5).

B.1 Proofs for Chapter 4

In this section we provide proofs for Chapter 4:

• Section B.1.1 contains proofs of soundness and completeness of refocusing for
rules with left-to-right order of evaluation for XSOS without modular abrupt ter-
mination (Definitions 4.1 and 4.2).

• Section B.1.2 contains proofs of soundness and completeness of refocused rules
with modular abrupt termination (Definitions 4.10 on page 113 and 4.11 on
page 114).

B.1.1 Correctness of refocusing

The lemmas in this section are the basis for the first main result in Chapter 4, namely
Theorem 4.4 on page 109.

Lemma 4.5 (Refocusing is sound) For any transition relation→ that implements left-
to-right order of evaluation and whose refocused counterpart is a relation ⇓, it holds
that:

R ` e/S ⇓ e′/S′ =⇒ R ` e/S→∗ e′/S′

Proof. By rule induction on ⇓. There are three kinds of rules to consider: rules with
premises (PBXRS- f i); rules with a single premise (PBXRS- f 0); simple rules (PBXRS- f );
and the reflexive rule for final configurations (XSOS-PB-Iter-Refl).
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Case (XRS- f i) The induction hypothesis gives us:

R′ ` e/S −→∗ e′/S′ (IH1)

R ` f (v1, . . . ,vn,e′, . . .)/S′ −→∗ e′′/S′′ (IH2)

The goal is:
R ` f (v1, . . . ,vn,e, . . .)/S′ −→∗ e′′/S′′ (Goal)

Applying Lemma 4.6 (see below) to (IH1) gives:

R ` f (v1, . . . ,vn,e, . . .)/S −→∗ f (v1, . . . ,vn,e′, . . .)/S′ (IH1′)

The goal follows by transitivity of→∗.

Case (PBXRS- f 0) From (PBXRS- f 0), we have the hypothesis:

¬Q( f (v1, . . . ,vn,e, . . .),S) (H1)

The induction hypothesis gives us:

R ` e0/S0 −→∗ e′/S′ (IH)

The goal is:
R ` f (v1, . . . ,vn, . . .)/S −→∗ e′/S′ (Goal)

Since ⇓ is the refocused counterpart of → we know that there is exactly one simple
small-step rule corresponding to the single-premise rule (PBXRS- f 0). Such a small-
step rule must have the form:

¬Q( f (v1, . . . ,vn, . . .),S)
R ` f (v1, . . . ,vn, . . .)/S −→ e0/S0

The goal follows by application of (Trans), the small-step rule, (H1), and (IH).

Case (PBXRS- f ) The case is analogous to the case for (PBXRS- f 0).

Case (XSOS-PB-Iter-Refl) The goal is immediate.

Lemma 4.6 (Congruence of reflexive-transitive closure) For any transition relation→
that implements left-to-right order of evaluation, and where→ has a rule:

R′ ` e/S −→ e′/S′

R ` f (v1, . . . ,vn,e, . . .)/S −→ f (v1, . . . ,vn,e′, . . .)/S′

it holds that:
R′ ` e/S −→∗ e′/S′ =⇒

R ` f (v1, . . . ,vn,e, . . .)/S −→∗ f (v1, . . . ,vn,e′, . . .)/S′
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Proof. By rule induction on→∗.

Case (Trans) From (Trans) we have the hypothesis:

R′ ` e/S→ e0/S0 (H2)

From the induction hypothesis we have:

R ` f (v1, . . . ,vn,e0, . . .)/S0 −→∗ f (v1, . . . ,vn,e′, . . .)/S′ (IH)

The goal is:

R ` f (v1, . . . ,vn,e, . . .)/S −→∗ f (v1, . . . ,vn,e′, . . .)/S′ (Goal)

We know that there is a small-step rule of the form:

¬Q(e,S)
R′ ` e/S −→ e0/S0

R ` f (v1, . . . ,vn,e, . . .)/S −→ f (v1, . . . ,vn,e0, . . .)/S0

If Q(e,S) then, by inversion on (IH), we get (e,S) = (e0,S0) and the goal follows. If
¬Q(e,S) then the goal follows by (Trans) and the induction hypothesis.

Case (Refl) The goal is immediate.

Lemma 4.7 (Refocusing is complete) For any transition relation → that implements
left-to-right order of evaluation and whose refocused counterpart is a relation ⇓, it
holds that:

R ` e/S −→∗ e′/S′ =⇒

R ` e/S ⇓ e′/S′

Proof. By rule induction on→∗. The central argument of the proof is Lemma 4.8 (see
below).

Case (Trans) From (Trans) we have the hypothesis:

R ` e/S −→ e0/S0 (H1)

From the induction hypothesis we have:

R ` e0/S0 ⇓ e′/S′ (IH)

The goal follows by application of Lemma 4.8.

Case (Refl) The goal is immediate.
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Lemma 4.8 (Pretty-big-steps can be broken up into small-steps) For any transition re-
lation → that implements left-to-right order of evaluation and whose refocused coun-
terpart is a relation ⇓, it holds that:

¬Q(e,S) =⇒ R ` e/S −→ e′/S′ =⇒ R ` e′/S′ ⇓ e′′/S′′ =⇒

R ` e/S ⇓ e′′/S′′

Proof. By rule induction on→.

Case (XRS- f i) From (XRS- f i) and the goal we have the hypotheses:

¬Q(e0,S) (H1)

R′ ` e0/S→ e′0/S0
(H2)

R ` f (v1, . . . ,vn,e′0, . . .)/S0 ⇓ e′′/S′′ (H3)

From the induction hypothesis we have:

∀e1 S1. R′ ` e′0/S0
⇓ e1/S1

=⇒ R′ ` e0/S ⇓ e1/S1 (IH)

The goal is:
R ` f (v1, . . . ,vn,e0, . . .)/S ⇓ e′′/S′′

We reason by inversion on (H3). For the premise it either holds that: a rule with
premises matches; a rule with a single premise matches; a simple rule matches; or the
configuration is abruptly terminated, i.e., Q( f (v1, . . . ,vn,e0, . . .),S).

Subcase (PBXRS- f i) It is either the case that we are evaluating the sub-term e′0, or we
are evaluating the next sub-term in the sequence.

In the latter case, e′0 must be some value v0, and (H2) must therefore be of the form:

R′ ` e0/S→ v0/S0 (H2)

The goal follows from applying Lemma 4.9 (see below) to (H2), and by application of
the pretty-big-step counterpart to (XRS- f i), i.e., (PBXRS- f i).

In the former case, we get as hypotheses from inversion:

¬Q(e′0,S0) (H4)

R′ ` e′0/S0
⇓ e′1/S1

(H5)

R ` f (v1, . . . ,vn,e′1, . . .)/S1 ⇓ e′′/S′′ (H6)

By applying (IH) to (H5), the goal now follows by application of the pretty-big-step
counterpart to (XRS- f i), i.e., (PBXRS- f i).

Subcase (PBXRS- f 0) The sub-term e′0 must be a value, or the rule (PBXRS- f ) would
not match. Thus (H2) must be of the form:

R′ ` e0/S→ v0/S0 (H2)
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The goal follows from applying Lemma 4.9 (see below) to (H2), and by application of
the pretty-big-step counterpart to (XRS- f i), i.e., (PBXRS- f i).

Subcase (PBXRS- f ) Analogous to (PBXRS- f 0).

Subcase (XSOS-PB-Iter-Refl) The configuration e′0/S0
must be abruptly terminated. The

goal follows by applying Lemma 4.9 to (H2), and by application of the pretty-big-step
counterpart to (XRS- f i), i.e., (PBXRS- f i).

Case (XRS- f ) From the goal we have the hypothesis:

R ` e′/S′ ⇓ e′′/S′′ (H1)

From the induction hypothesis we have:

∀e1 S1. R′ ` e′/S′ ⇓ e1/S1
=⇒ R′ ` e/S ⇓ e1/S1 (IH)

The goal is:
R ` f (v1, . . . ,vn,e, . . .)/S ⇓ e′′/S′′ (Goal)

The goal follows by application of the pretty-big-step counterpart to (XRS- f ), i.e., either
(PBXRS- f 0) or (PBXRS- f ), (IH), and (H1).

B.1.2 Correctness of refocusing with abrupt termination

The lemmas in this section are the basis for the second main result in Chapter 4, namely
Theorem 4.12 on page 115.

Lemma 4.14 (Congruence of reflexive-transitive closure with abrupt termination) For
any transition relation→ that implements left-to-right order of evaluation with abrupt
termination, and where→ has a pair of rules:

¬Q(ei,S) (e′i,S
′) ∈ X

R′ ` ei/S→ e′i/S′

R ` f (v1, . . . ,vi−1,ei,ei+1, . . . ,en, . . .)/S→ e′′/S′′

¬Q(ei,S) (e′i,S
′) 6∈ X

R′ ` ei/S→ e′i/S′

R ` f (v1, . . . ,vi−1,ei,ei+1, . . . ,en, . . .)/S→
f (v1, . . . ,vi−1,e′i,ei+1, . . . ,en, . . .)/S′

where X is a set of final configurations. For each such pair of rules, it holds that:

R′ ` ei/S→∗ e′i/S′ =⇒ (e′i,S
′) ∈ X =⇒

R ` f (v1, . . . ,vi−1,ei,ei+1, . . . ,en, . . .)/S→∗ e′′/S′′
(1)
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and:

R′ ` ei/S→∗ e′i/S′ =⇒ (e′i,S
′) 6∈ X =⇒

R ` f (v1, . . . ,vi−1,ei,ei+1, . . . ,en, . . .)/S→∗ f (v1, . . . ,vi−1,e′i,ei+1, . . . ,en, . . .)/S′

(2)

Proof. By rule induction on→∗.

Case (Trans) From (Trans) and the goal we have the hypotheses:

¬Q(e,S) (H1)

R′ ` ei/S→ e0/S0 (H2)

From the induction hypothesis we have:

R ` f (v1, . . . ,vi−1,e0,ei+1, . . . ,en, . . .)/S0 →∗ e′′S′′ (IH)

The goal is:

R ` f (v1, . . . ,vi−1,ei,ei+1, . . . ,en, . . .)/S→∗ e′′/S′′ (Goal)

It is either the case that (e0,S0) ∈ X , or that it is not.

Subcase ((e0,S0) ∈ X) By assumption, there is a rule:

¬Q(e,S) (e0,S0) ∈ X
R′ ` ei/S→ e0/S0

R ` f (v1, . . . ,vi−1,ei,ei+1, . . . ,en, . . .)/S→ e′′/S′′

The goal follows by application of (Trans), this rule, (H1), (H2), and (Refl).

Subcase ((e0,S0) 6∈ X) By assumption, there is a rule:

¬Q(e,S) (e0,S0) 6∈ X
R′ ` ei/S→ e0/S0

R ` f (v1, . . . ,vi−1,ei,ei+1, . . . ,en, . . .)/S→
f (v1, . . . ,vi−1,e0,ei+1, . . . ,en, . . .)/S0

The goal follows by application of (Trans), this rule, (H1), (H2), and (IH).

Case (Refl) The goal is immediate.

Lemma 4.16 (Pretty-big-steps can be broken up into small-steps with abrupt termina-
tion) For any transition relation → that implements left-to-right order of evaluation
with abrupt termination and whose refocused counterpart is a relation ⇓, it holds that:

R ` e/S→ e′/S′ =⇒ R ` e′/S′ ⇓ e′′/S′′ =⇒

R ` e/S ⇓ e′′/S′′
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Proof. The only existing case of the induction proof in Lemma 4.8 that needs extend-
ing is (XRS- f i): the reasoning by inversion on (H3) must be extended with two new
subcases for rules (PBXRS-AT- f i) and (PBXRS-OK- f i). Both of these subcases follow by
the same line of reasoning as subcase (PBXRS- f i) in Lemma 4.8. Here, we give the two
new cases for the small-step rule induction.

Case (XRS-AT- f i) From (XRS-AT- f i) and the goal we have the hypotheses:

¬Q(e0,S) (H1)

R′ ` e0/S→ e′0/S0
(H2)

(e′0,S0) ∈ X (H3)

R ` e′/S′ ⇓ e′′/S′′ (H4)

From the induction hypothesis we have:

∀e1 S1. R′ ` e′0/S0
⇓ e1/S1

=⇒ R′ ` e0/S ⇓ e1/S1 (IH)

The goal is:
R ` f (v1, . . . ,vn,e0, . . .)/S ⇓ e′′/S′′

Since (e′0,S0) is a final configuration, the goal follows by applying Lemma 4.17 in (H2),
application of the pretty-big-step counterpart to (XRS-AT- f i), i.e., (PBXRS-AT- f i).

Case (XRS-OK- f i) This case is analogous to the extended version of (XRS- f i) described
above.

Lemma 4.17 (Correspondence between terminating small-steps and refocusing with
abrupt termination) For any transition relation → that implements left-to-right order
of evaluation with abrupt termination and whose refocused counterpart is ⇓, it holds
that:

¬Q(e,S) =⇒ R ` e/S→ e′/S′ =⇒ Q(e′,S′) =⇒

R ` e/S ⇓ e′/S′

Proof. By induction on →. The case for simple rules (XRS- f ) remains unchanged. It
only remains to consider the case for instances of (XRS-AT- f i). We get as hypotheses:

¬Q(e,S) (H1)

R′ ` e/S −→ e0/S0 (H2)

(e0,S0) ∈ X (H3)

Q(e′,S′) (H4)

From the induction hypothesis we have:

∀e1 S1. Q(e1,S1) =⇒ R′ ` e/S ⇓ e1/S1 (IH)
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The goal is:
R ` f (v1, . . . ,vn,e, . . .)/S ⇓ e′/S′ (Goal)

Since X are final configurations, we know that:

Q(e0,S0) (H3′)

Applying (IH) to (H3′), it follows that:

R′ ` e/S ⇓ e0/S0 (H3′′)

The goal follows by application of a corresponding pretty-big-step rule of the form
(PBXRS-AT- f i), (H1), (H3′′), (H3), (XSOS-PB-Iter-Refl), and (H4).

B.2 Proofs for Chapter 5

In this section we provide proofs for Chapter 5, proving the soundness and complete-
ness of coinductive refocused pretty-big-step XSOS rules with modular abrupt termina-
tion and divergence (Definition 4.10 and 4.11, and Figure 5.1) relative to their small-
step XSOS counterparts. The lemmas in this section are the basis for the main result in
Chapter 5, namely Theorem 5.10 page 131.

Lemma 5.4 (Coevaluation without convergence implies divergence) For any relation
⇓ with left-to-right order of evaluation with abrupt termination, the following holds
about its coinductive interpretation ⇓co:

R ` e/S ⇓co e′/S′ =⇒

¬
(

R ` e/S ⇓ e′/S′

)
=⇒

R ` e/S ⇓co e′/S′[div �]

Proof. The proof is by guarded rule coinduction on ⇓co and inversion on the first hy-
pothesis. We use the goal as coinduction hypothesis, i.e.:

∀R e S e′ S′.
R ` e/S ⇓co e′/S′ =⇒

¬
(

R ` e/S ⇓ e′/S′

)
=⇒

R ` e/S ⇓co e′/S′[div �]

(CIH)

We consider each of the cases resulting from inversion on the first hypothesis.

Case (PBXRS- f i) From inversion and the goal we have:

¬Q(ei,S) (H1)

R ` e1/S ⇓
co e′1/S′ (H2)

R ` f (v1, . . . ,vi−1,e′i,ei+1, . . . ,en, . . .)/S′ ⇓
co e′′/S′′ (H3)

¬
(

R ` f (v1, . . . ,vi−1,ei,ei+1, . . . ,en, . . .)/S ⇓ e′′/S′′

)
(H4)
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The goal is:

R ` f (v1, . . . ,vi−1,ei,ei+1, . . . ,en, . . .)/S ⇓
co e′′/S′′[div �] (Goal)

We reason by the law of excluded middle on:

R ` ei/S ⇓ e′i/S′ (P)

Subcase (P) From the law of excluded middle we have:

R ` ei/S ⇓ e′i/S′ (H5)

Reasoning by the law of excluded middle on the second premise, it either holds that:

R ` f (v1, . . . ,vi−1,e′i,ei+1, . . . ,en, . . .)/S′ ⇓ e′′/S′′

or it does not. If it does, then (H4) is a contradiction. If it does not, then the goal
follows from the available hypotheses and Lemma 5.3.

Subcase (¬P) From the law of excluded middle we have:

¬
(

R ` ei/S ⇓ e′i/S′

)
(H5)

The goal follows by applying the appropriate constructor for (PBXRS- f i) to the goal,
(H1), (CIH), (H2), (H5), and (XSOS-PB-Iter-Refl).

Case (PBXRS- f 0) From inversion and the goal we have:

¬Q(e′,S′) (H1)

¬Q( f (v1, . . . ,vn),S) (H2)

R ` e′/S′ ⇓
co e′′/S′′ (H3)

¬
(

R ` f (v1, . . . ,vn)/S ⇓ e′′/S′′

)
(H4)

The goal is:
R ` f (v1, . . . ,vn)/S ⇓

co e′′/S′′ (Goal)

We invoke the law of excluded middle on:

R ` e′/S′ ⇓ e′′/S′′

When the hypothesis is true, (H4) is a contradiction. When it is false, the goal follows
from the available hypotheses and the coinduction hypothesis.
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Case (PBXRS- f ) From inversion and the goal we have:

¬Q( f (v1, . . . ,vn),S) (H1)

Q(e′,S′) (H2)

From this, the goal is immediate:

R ` f (v1, . . . ,vn)/S ⇓
co e′/S′ (Goal)

Case (PBXRS-AT- f i) The case is analogous to (PBXRS- f i) where, in addition to doing
classical reasoning on ⇓, we do case analysis on whether the configuration resulting
from evaluation is in X or not.

Case (PBXRS-OK- f i) The case is analogous to (PBXRS- f i) where, in addition to doing
classical reasoning on ⇓, we do case analysis on whether the configuration resulting
from evaluation is in X or not.

Lemma 5.7 (Small-step preserves coinductive refocusing) For any relation ⇓ that is the
refocused counterpart to a small-step relation → with left-to-right order of evaluation
with abrupt termination, the following holds about its coinductive interpretation ⇓co:

R ` e/S[div �] ⇓co e′/S′[div �] =⇒

∃e′′ S′′. R ` e/S[div �] −→ e′′/S′′ ∧ R ` e′′/S′′ ⇓
co e′/S′[div �]

Proof. The proof is by structural induction on the term e in the first All. hypothesis
terms that do not match the structure of a rule can be disposed of by inversion on the
first premise. Thus, in our proof we consider cases for rules, even through our proof is
by induction on terms.

Case (PBXRS- f i) From inversion and the goal we have:

¬Q(e,S) (H1)

R ` ei/S[div �] ⇓
co e′i/S′ (H2)

R ` f (v1, . . . ,vi−1,e′i,ei+1, . . . ,en, . . .)/S′ ⇓
co e′′/S′′[div �] (H3)

From the induction hypothesis we get:

∀e′i S′. R ` ei/S[div �] ⇓co e′i/S′[div �] =⇒

∃e0 S0. R ` ei/S[div �]→ e0/S0 ∧ R ` e0/S0 ⇓
co e′i/S′[div �]

(IH)

The goal is:

∃e1 S1. R ` f (v1, . . . ,vi−1,ei,ei+1, . . . ,en, . . .)/S[div �] ⇓
co e1/S1 ∧ R ` e1/S1 ⇓

co e′′/S′′[div �]
(Goal)
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By applying Lemma 5.5 to (H2), we get:

R ` ei/S[div �] ⇓ e′i/S′ ∨ R ` ei/S[div �] ⇓
co e′i/S′[div �] (H4)

We reason by case analysis on (H4).

Subcase (R ` ei/S[div �] ⇓ e′i/S′) By Theorem 4.12, we get:

R ` ei/S[div �]→∗ e′i/S′ (H4′)

By inversion on this hypothesis, we get:

R ` ei/S[div �]→ e′0/S0
(H5)

R ` e′0/S0
→∗ e′i/S′ (H6)

By application of Theorem 4.12 and Lemma 5.3 in (H5), we get:

R ` e′0/S0
⇓co e′i/S′ (H6′)

The goal follows from (H1), (XRS- f i), (PBXRS- f i), (H6′), and (H3).

Subcase (R ` ei/S[div �] ⇓co e′i/S′) By the induction hypothesis, we get:

R ` ei/S[div �]→ e0/S0 (H4)

R ` e0/S0 ⇓
co e′i/S′[div �] (H5)

The goal follows from (H1), (H4), (XRS- f i), (PBXRS- f i), (H5), and (XSOS-PB-Iter-
Refl).

Case (PBXRS- f 0) The case is analogous to (PBXRS- f i).

Case (PBXRS- f ) The case is a contradiction: no rules explicitly change the div flag.
Thus, there is no rule instance matching (PXRS- f ) where:

R ` e/S[div �] ⇓
co e′/S′[div �]

Case (PBXRS-AT- f i) The case is analogous to (PBXRS- f i).

Case (PBXRS-OK- f i) The case is analogous to (PBXRS- f i).

Lemma 5.8 (Coinductive refocusing is complete) For any relation ⇓ that is the refo-
cused counterpart to a small-step relation→ with left-to-right order of evaluation with
abrupt termination, the following holds about its coinductive interpretation ⇓co:

R ` e/S
∞−→ =⇒ ∀e′ S′. R ` e/S ⇓

co e′/S′[div �]
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Proof. The proof is by guarded coinduction, using the goal as coinduction hypothesis,
and inversion on the first premise. From the goal and this inversion, we have:

R ` e/S→ e′/S′ (H1)

R ` e′/S′
∞−→ (H2)

We reason by inversion on (H1), considering each case in turn:

Case (XRS- f i) From the inversion we get the hypotheses:

¬Q(ei,S) (H3)

R′ ` ei/S→ e′i/S′ (H4)

R ` f (v1, . . . ,vn,ei,ei+1, . . . ,en, . . .)/S
∞−→ (H5)

We invoke the law of excluded middle on:

∃e′′ S′′. R′ ` ei/S→∗ e′′/S′′ ∧ Q(e′′,S′′) ∧ R ` f (v1, . . . ,vn,e′′,ei+1, . . . ,en, . . .)/S′′
∞−→

(P)

Subcase (P) When P holds, we eliminate the existential and conjunctions to get the
hypotheses:

R′ ` ei/S→∗ e′′/S′′ (H6)

Q(e′′,S′′) (H7)

R ` f (v1, . . . ,vn,e′′,ei+1, . . . ,en, . . .)/S′′
∞−→ (H8)

Applying Theorem 4.12 to (H6), using (H7), we get:

R′ ` ei/S ⇓ e′′/S′′ (H6′)

The goal follows by applying the corresponding rule (PBXRS- f i), (H3), Lemma 5.3,
(H6′), the coinduction hypothesis, and (H8).

Subcase (¬P) If P does not hold, we apply Lemma 5.9 to get the hypothesis:

R′ ` ei/S
∞−→ (H6)

The goal follows by applying the corresponding rule (PBXRS- f i), (H3), the coinduction
hypothesis, (H6), and (XSOS-PB-Iter-Refl).

Case (XRS-AT- f i) The case is analogous to (XRS- f i), using Lemma B.1 (below).

Case (XRS-OK- f i) The case is analogous to (XRS- f i), using Lemma B.1 (below).
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Case (XRS- f ) From the inversion we get the hypotheses:

¬Q( f (v1, . . . ,vn),S) (H3)

R ` f (v1, . . . ,vn)/S→ e′/S′ (H4)

R ` e′/S′
∞−→ (H5)

There are two possibilities: either e′/S′ is a final configuration, in which case (H5) is a
contradiction; otherwise it holds that:

¬Q(e′,S′) (H6)

and there is a corresponding single-premise rule whose structure matches (PBXRS- f 0).
The goal follows by applying this rule, (H3), (H6), the coinduction hypothesis, and
(H5).

Lemma 5.9 (Congruence of infinite closure) For any small-step relation → with left-
to-right order of evaluation with abrupt termination and with a rule that matches the
scheme:

∀ei . . .en S S′.

¬Q(ei,S)
R′ ` ei/S→ e′i/S′

R ` f (v1, . . . ,vi−1,ei,ei+1, . . . ,en, . . .)/S→
f (v1, . . . ,vi−1,e′i,ei+1, . . . ,en, . . .)/S′

(XRS- f i)

For each such rule, it holds that:

R ` f (v1, . . . ,vn,ei,ei+1, . . . ,en, . . .)/S
∞−→ =⇒

¬(∃e′ S′. R′ ` ei/S −→∗ e′/S′ ∧ Q(e′,S′) ∧
R ` f (v1, . . . ,vn,e′,ei+1, . . . ,en, . . .)/S′

∞−→) =⇒

R′ ` ei/S
∞−→

Proof. The proof is by guarded coinduction, using the goal as coinduction hypothe-
sis, and inversion on the first premise. By inversion and from the goal, we get the
hypotheses:

R ` f (v1, . . . ,vn,ei,ei+1, . . . ,en, . . .)/S→ e0/S0 (H1)

R ` e0/S0

∞−→ (H2)

¬
(
∃e′ S′. R′ ` ei/S −→∗ e′/S′ ∧ Q(e′,S′) ∧ R ` f (v1, . . . ,vn,e′,ei+1, . . . ,en, . . .)/S′

∞−→
)

(H3)
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We reason by inversion on (H1). Due to the assumption that → implements left-to-
right order of evaluation, we only need to consider the case in which the first premise
is a rule of the form (XRS- f i), i.e., we get as result from inversion the hypotheses:

R′ ` ei/S→ e′i/S′i
(H4)

R ` f (v1, . . . ,vn,e′i,ei+1, . . . ,en, . . .)/S′i
∞−→ (H2′)

For all other cases, it holds that ei is a value, whereby the second hypothesis in the goal
becomes a contradiction.

A straightforward consequence of (H3) and (H4) is:

¬
(
∃e′ S′. R′ ` e′i/S′i

−→∗ e′/S′ ∧ Q(e′,S′) ∧ R ` f (v1, . . . ,vn,e′,ei+1, . . . ,en, . . .)/S′
∞−→
)

(H5)
The goal follows by an application of the (XSOS-InfClo) rule, (H4), the coinduction
hypothesis, (H2′), and (H45).

Lemma B.1 (Congruence of infinite closure with abrupt termination) For any small-
step relation→ with left-to-right order of evaluation with abrupt termination and with
a pair of rules that matches the scheme:

∀ei . . .en S S′.

¬Q(ei,S) (e′i,S
′) ∈ X

R′ ` ei/S→ e′i/S′

R ` f (v1, . . . ,vi−1,ei,ei+1, . . . ,en, . . .)/S→ e′′/S′′
(XRS-AT- f i)

∀ei . . .en S S′.

¬Q(ei,S) (e′i,S
′) 6∈ X

R′ ` ei/S→ e′i/S′

R ` f (v1, . . . ,vi−1,ei,ei+1, . . . ,en, . . .)/S→
f (v1, . . . ,vi−1,e′i,ei+1, . . . ,en, . . .)/S′

(XRS-OK- f i)

For each such pair of rules, it holds that:

R ` f (v1, . . . ,vn,ei,ei+1, . . . ,en, . . .)/S
∞−→ =⇒

¬
(
∃e′ S′. R′ ` ei/S −→∗ e′/S′ ∧ Q(e′,S′) ∧ R ` f (v1, . . . ,vn,e′,ei+1, . . . ,en, . . .)/S′

∞−→
)

=⇒

R ` ei/S
∞−→

Proof. The proof is by guarded coinduction and inversion on the first premise, following
the same structure of Lemma 5.9.
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C Specifications

This appendix provides specifications for:

• pretty-big-step SOS for λ •cbv+ref (i.e., call-by-value λ -calculus with ML-style ref-
erences and abrupt termination) in Section C.1;

• Plotkin-style propagation of exceptions using SOS in Section C.2; and

• a functional derivation (following Danvy [Dan09]) for going from reduction-
based to reduction-free normalization.

C.1 Pretty-big-step semantics for λ •cbv+ref

This section recalls how to give big-step semantics for ML-style references using pretty-
big-step semantics, extending the pretty-big-step semantics in Section 2.5.3 (page 49).
The extension does not introduce any significant changes to existing rules; the main
change is that outcomes now record the store σ resulting from abrupt termination.

Abstract syntax.

ExprNS 3 e ::= . . . | ref(e) | deref(e) | assign(e,e) Expressions

ValNS 3 v ::= . . . | r Values

IntmExpr 3 E ::=· · · | ref1(o) | deref1(o)
| assign1(o,e) | assign2(o,o)

Semantic expressions

OutcomePBS 3 o ::= TER(v,σ) | DIV | EXC(v) Outcomes
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Semantics.

ρ ` (e1,σ) ⇓ o1 ρ ` (plus1(o1,e2),σ) ⇓ o
ρ ` (plus(e1,e2),σ) ⇓ o

(PBS-λ •cbv+ref-Plus)

ρ ` (e2,σ) ⇓ o2 ρ ` (plus2(v1,o2),σ) ⇓ o
ρ ` (plus1(TER(v1,σ),e2),σ0) ⇓ o

(PBS-λ •cbv+ref-Plus1)

ρ ` (plus2(n1,TER(n2,σ)),σ0) ⇓ TER(n1 +n2,σ)
(PBS-λ •cbv+ref-Plus2)

ρ ` (λx.e,σ) ⇓ TER(〈x,e,ρ〉,σ)
(PBS-λ •cbv+ref-Lam)

ρ ` (e1,σ) ⇓ o1 ρ ` (app1(o1,e2),σ) ⇓ o
ρ ` (e1 e2,σ) ⇓ o

(PBS-λ •cbv+ref-App)

ρ ` (e2,σ) ⇓ o2 ρ ` (app2(v1,e2),σ) ⇓ o
ρ ` (app1(TER(v1,σ),e2),σ0) ⇓ o

(PBS-λ •cbv+ref-App1)

ρ ′[x 7→ v2] ` (e,σ) ⇓ o
ρ ` (app2(〈x,e,ρ ′〉,TER(v2,σ)),σ0) ⇓ o

(PBS-λ •cbv+ref-App2)

ρ ` (e,σ) ⇓ o ρ ` (ref1(o),σ) ⇓ o′

ρ ` (ref(e),σ) ⇓ o′
(PBS-λ •cbv+ref-Ref)

r 6∈ σ

ρ ` (ref1(TER(v,σ)),σ0) ⇓ TER(r,σ [r 7→ v])
(PBS-λ •cbv+ref-Ref1)

ρ ` (e,σ) ⇓ o ρ ` (deref1(o),σ) ⇓ o′

ρ ` (deref(e),σ) ⇓ o′
(PBS-λ •cbv+ref-Deref)

r ∈ σ

ρ ` (deref1(TER(r,σ)),σ0) ⇓ TER(σ(r),σ)
(PBS-λ •cbv+ref-Deref1)

ρ ` (e1,σ) ⇓ o1 ρ ` (assign1(o1,e2),σ) ⇓ o
ρ ` (assign(e1,e2),σ) ⇓ o

(PBS-λ •cbv+ref-Assign)

ρ ` (e2,σ) ⇓ o2 ρ ` (assign2(v1,o2),σ) ⇓ o
ρ ` (assign1(TER(v1,σ),e2),σ0) ⇓ o

(PBS-λ •cbv+ref-Assign1)

r ∈ σ

ρ ` (assign2(r,TER(v,σ)),σ0) ⇓ TER(unit,σ [r 7→ v])
(PBS-λ •cbv+ref-Assign2)

ρ ` (e1,σ) ⇓ o1 ρ ` (catch1(o1,x,e2),σ) ⇓ o
ρ ` (catch(e1,x,e2),σ) ⇓ o

(PBS-λ •cbv+ref-Catch)

ρ ` (catch1(TER(v1,σ),x,e2),σ0) ⇓ TER(v1,σ)
(PBS-λ •cbv+ref-CatchV)

ρ[x 7→ v] ` (e2,σ) ⇓ o
ρ ` (catch1(EXC(v),e2),σ) ⇓ o

(PBS-λ •cbv+ref-Catch)
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abort(o1)

ρ ` (plus1(o1,e2),σ) ⇓ o1
(PBS-λcbv+ref-Abort-Plus1)

abort(o2)

ρ ` (plus2(n1,o2),σ) ⇓ o2
(PBS-λcbv+ref-Abort-Plus2)

abort(o1)

ρ ` (app1(o1,e2),σ) ⇓ o1
(PBS-λcbv+ref-Abort-App1)

abort(o2)

ρ ` (app2(〈x,e,ρ ′〉,o2),σ) ⇓ DIV
(PBS-λcbv+ref-Abort-App2)

abort(o)
ρ ` (ref1(o),σ) ⇓ o

(PBS-λcbv+ref-Abort-Ref1)

abort(o)
ρ ` (deref1(o),σ) ⇓ o

(PBS-λcbv+ref-Abort-Deref1)

abort(o1)

ρ ` (assign1(o1,e2),σ) ⇓ o1
(PBS-λcbv+ref-Abort-Assign1)

abort(o2)

ρ ` (assign2(r,o2),σ) ⇓ o2
(PBS-λcbv+ref-Abort-Assign2)

abort(o)
ρ ` (throw1(o),σ) ⇓ o

(PBS-λ •cbv+ref-Abort-Throw)

C.2 Plotkin-style propagation of abrupt termination in SOS

We illustrate Plotkin’s [Plo81] approach to propagating abrupt termination in SOS rules
for λ •cbv. The difference is summarised by comparing the rules from Figure 2.11 to the
Plotkin-style propagation rules in Figure C.1.

Plotkin’s approach to propagating exceptions is, for each congruence rule in the
language, to have a rule with a premise that results in abrupt termination. Unlike the
approach we saw in Section 2.2.5, propagation à la Plotkin propagates the exception
instantaneously. Using →2.11 for the transition relation for λ •cbv with the propagation
rules from Figure 2.11, and →C.1 the transition relation with the propagation rules in
Figure C.1. Consider the expression plus(1,plus(2,plus(throw(0),3))). Using Plotkin-
propagation, this expression causes an exception in a single transition (where we omit
the irrelavant parts of the configuration, such as the store and environment):

(plus(1,plus(2,plus(throw(0),3))),σ)
→C.1 (EXC(0),σ)
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ρ ` (e1,σ)→ (EXC(v),σ ′)
ρ ` (plus(e1,e2),σ)→ (EXC(v),σ ′)

(SOS-Plus1-PExc)

ρ ` (e2,σ)→ (EXC(v),σ ′)
ρ ` (plus(n1,e2),σ)→ (EXC(v),σ ′)

(SOS-Plus2-PExc)

ρ ` (e1,σ)→ (EXC(v),σ ′)
ρ ` (e1 e2,σ)→ (EXC(v),σ ′)

(SOS-App1-PExc)

ρ ` (e2,σ)→ (EXC(v),σ ′)
ρ ` (v1 e2,σ)→ (EXC(v),σ ′)

(SOS-App2-PExc)

ρ ` (e,σ)→ (EXC(v),σ ′)
ρ ` (ref(e),σ)→ (EXC(v),σ ′)

(SOS-Ref-PExc)

ρ ` (e,σ)→ (EXC(v),σ ′)
ρ ` (deref(e),σ)→ (EXC(v),σ ′)

(SOS-Deref-PExc)

ρ ` (e1,σ)→ (EXC(v),σ ′)
ρ ` (assign(e1,e2),σ)→ (EXC(v),σ ′)

(SOS-Assn1-PExc)

ρ ` (e2,σ)→ (EXC(v),σ ′)
ρ ` (assign(r,e2),σ)→ (EXC(v),σ ′)

(SOS-Assn2-PExc)

ρ ` (e,σ)→ (EXC(v),σ ′)
ρ ` (throw(e),σ)→ (EXC(v),σ ′)

(SOS-Throw-PExc)

Figure C.1: SOS rules à la Plotkin for propagating exceptions

Using the propagation rules from Section 2.2.5, however, requires multiple steps to
propagate the exception:

plus(1,plus(2,plus(throw(0),3)))
→2.11 plus(1,plus(2,plus(EXC(0),3)))
→2.11 plus(1,plus(2,EXC(0)))
→2.11 plus(1,EXC(0))
→2.11 EXC(0)

Exception propagation à la Plotkin, however, still requires us to add rules for existing
constructs, so it is a non-modular extension.
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expressions

C.3 From reduction-based to reduction-free normalisation
for simple arithmetic expressions

This appendix shows the steps involved in deriving a big-step functional evaluator for
going from a reduction-based (big-step evaluation strategy iterated by an iterate

function) to reduction-free normalisation function (big-step tail-recursive evaluation
function), following Danvy’s From Reduction-Based to Reduction-Free Normalization
[Dan09].

datatype Term = NUM of int

| PLUS of Term * Term

type Value = int

(* Prelude to a reduction semantics *)

datatype PotRed = PR_PLUS of Term * Term

datatype Found = FVAL of Value | POTRED of PotRed

fun search (PLUS (NUM n1, NUM n2))

= POTRED (PR_PLUS (NUM n1, NUM n2))

| search (PLUS (t1, t2))

= (case (search t1)

of (FVAL v) => (search t2)

| (POTRED p) => POTRED p)

| search (NUM n) = FVAL n

(* CPS transform *)

fun search_k (PLUS (t1, t2), k)

= search_k (t1,

fn (FVAL n1) =>

search_k (t2,

fn (FVAL n2) =>

k (POTRED (PR_PLUS (NUM n1, NUM n2)))

| (POTRED p) =>

k (POTRED p))

| (POTRED p) =>

k (POTRED p))

| search_k (NUM n, k) = k (FVAL n)

(* Simplification *)

fun search_k’ (PLUS (t1, t2), k)

= search_k’ (t1,

fn n1 =>
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search_k’ (t2, fn n2 =>

POTRED (PR_PLUS (NUM n1, NUM n2))))

| search_k’ (NUM n, k) = k n

(* Defunctionalization *)

datatype Ctx = C_MT

| C_PLUS1 of Term * Ctx

| C_PLUS2 of Value * Ctx

fun search_c (PLUS (t1, t2), c)

= search_c (t1, C_PLUS1 (t2, c))

| search_c (NUM n, c)

= apply_c (c, n)

and apply_c (C_MT, n)

= FVAL n

| apply_c (C_PLUS1 (t2, c), n)

= search_c (t2, (C_PLUS2 (n, c)))

| apply_c (C_PLUS2 (n1, c), n2)

= POTRED (PR_PLUS (NUM n1, NUM n2))

(* Decomposition *)

datatype ValOrDecomp = VAL of Value

| DECOMP of PotRed * Ctx

fun decompose_t (PLUS (t1, t2), c)

= decompose_t (t1, C_PLUS1 (t2, c))

| decompose_t (NUM n, c)

= decompose_c (c, n)

and decompose_c (C_MT, n)

= VAL n

| decompose_c (C_PLUS1 (t2, c), n)

= decompose_t (t2, C_PLUS2 (n, c))

| decompose_c (C_PLUS2 (n1, c), n2)

= DECOMP (PR_PLUS (NUM n1, NUM n2), c)

fun decompose t = decompose_t (t, C_MT)

(* Recomposition *)

fun recompose (C_MT, t)

= t

| recompose (C_PLUS1 (t2, c), t1)

= recompose (c, PLUS (t1, t2))

| recompose (C_PLUS2 (v, c), t2)

= recompose (c, PLUS (NUM v, t2))
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expressions

(* Notion of contraction *)

datatype ContractOrErr = CONTRACTUM of Term | ERROR of string

fun contract (PR_PLUS (NUM n1, NUM n2))

= CONTRACTUM (NUM (n1+n2))

| contract _

= ERROR "Invalid operands for addition"

(* One-step reduction *)

datatype ReductOrStuck = REDUCT of Term

| STUCK of string

fun reduce t

= (case decompose t

of (VAL v)

=> STUCK "Irreducible term"

| (DECOMP (pr, k))

=> (case contract pr

of (CONTRACTUM t’)

=> REDUCT (recompose (k, t’))

| (ERROR s)

=> STUCK s))

(* Reduction-based normalization *)

datatype result_or_wrong = RESULT of Value

| WRONG of string

fun iterate (VAL v)

= RESULT v

| iterate (DECOMP (pr, k))

= (case contract pr

of (CONTRACTUM t’)

=> iterate (decompose (recompose (k, t’)))

| (ERROR s)

=> WRONG s)

fun normalize t = iterate (decompose t)

(* Refocusing *)

fun refocus0 (t, k) = decompose (recompose (k, t))

fun iterate0 (VAL n)

= RESULT n
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| iterate0 (DECOMP (pr, k))

= (case contract pr

of (CONTRACTUM t’)

=> iterate0 (refocus0 (t’, k))

| (ERROR s)

=> WRONG s)

fun normalize0 t = iterate (refocus0 (t, C_MT))

fun refocus1 (t, k) = decompose_t (t, k)

fun iterate1 (VAL n)

= RESULT n

| iterate1 (DECOMP (pr, k))

= (case contract pr

of (CONTRACTUM t’)

=> iterate1 (refocus1 (t’, k))

| (ERROR s)

=> WRONG s)

fun normalize1 t = iterate1 (refocus1 (t, C_MT))

(* Inlining the contraction function *)

fun refocus2 (t, k) = decompose_t (t, k)

fun iterate2 (VAL n)

= RESULT n

| iterate2 (DECOMP (PR_PLUS (NUM n1, NUM n2), k))

= iterate2 (refocus1 (NUM (n1+n2), k))

| iterate2 (DECOMP (_, _))

= WRONG "Invalid operands for addition"

fun normalize2 t = iterate2 (refocus2 (t, C_MT))

(* Lightweight fusion *)

fun iterate3 (VAL n)

= RESULT n

| iterate3 (DECOMP (PR_PLUS (NUM n1, NUM n2), c))

= iterate3_t (NUM (n1+n2), c)

| iterate3 (DECOMP (_, _))

= WRONG "Invalid operands for addition"

and iterate3_t (PLUS (t1, t2), c)

= iterate3_t (t1, C_PLUS1 (t2, c))
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expressions

| iterate3_t (NUM n, c)

= iterate3_c (c, n)

and iterate3_c (C_MT, n)

= iterate3 (VAL n)

| iterate3_c (C_PLUS1 (t2, c), n)

= iterate3_t (t2, C_PLUS2 (n, c))

| iterate3_c (C_PLUS2 (n1, c), n2)

= iterate3 (DECOMP (PR_PLUS (NUM n1, NUM n2), c))

fun normalize3 t = iterate3_t (t, C_MT)

(* Transition compression *)

fun iterate4_t (PLUS (t1, t2), c)

= iterate4_t (t1, C_PLUS1 (t2, c))

| iterate4_t (NUM n, c)

= iterate4_c (c, n)

and iterate4_c (C_MT, n)

= RESULT n

| iterate4_c (C_PLUS1 (t2, c), n)

= iterate4_t (t2, C_PLUS2 (n, c))

| iterate4_c (C_PLUS2 (n1, c), n2)

= iterate4_c (c, n1+n2)

fun normalize4 t = iterate4_t (t, C_MT)

(* Refunctionalization *)

fun iterate5 (PLUS (t1, t2), k)

= iterate5 (t1, fn n1 =>

iterate5 (t2, fn n2 =>

k (n1+n2)))

| iterate5 (NUM n, k)

= k n

fun normalize5 t = iterate5 (t, fn n => n)

(* Back to direct-style *)

fun iterate6 (PLUS (t1, t2))

= (case iterate6 t1

of n1 => (case iterate6 t2

of n2 =>

(n1 + n2)))

| iterate6 (NUM n)

= n
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fun normalize6 (PLUS (t1, t2))

= normalize6 t1 + normalize6 t2

| normalize6 (NUM n)

= n
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