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Abstract interpretation is a technique for developing static analyses. Yet, proving abstract interpreters sound is

challenging for interesting analyses, because of the high proof complexity and proof effort. To reduce complexity

and effort, we propose a framework for abstract interpreters that makes their soundness proof compositional.

Key to our approach is to capture the similarities between concrete and abstract interpreters in a single shared

interpreter, parameterized over an arrow-based interface. In our framework, a soundness proof is reduced to

proving reusable soundness lemmas over the concrete and abstract instances of this interface; the soundness

of the overall interpreters follows from a generic theorem.

To further reduce proof effort, we explore the relationship between soundness and parametricity. Para-

metricity not only provides us with useful guidelines for how to design non-leaky interfaces for shared

interpreters, but also provides us soundness of shared pure functions as free theorems. We implemented our

framework in Haskell and developed a k-CFA analysis for PCF and a tree-shape analysis for Stratego. We

were able to prove both analyses sound compositionally with manageable complexity and effort, compared to

a conventional soundness proof.
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1 INTRODUCTION
Abstract interpretation [Cousot and Cousot 1979] is an approach to static analysis with soundness at

its heart: An abstract interpreter must approximate the behavior of a program as prescribed by a con-

crete interpreter. This soundness proposition can guide the design of abstract interpreters [Cousot

1999] and prescribes what needs to be proven about the analysis. Unfortunately, it is far less clear

how to prove an abstract interpreter sound and, in particular, how to decompose the soundness

proof into proof obligations of manageable size. Yet, compositional soundness proofs are crucial

when developing verified abstract interpreters for real-world languages to reduce proof complexity
and proof effort.

AbstractConcrete

What makes the decomposition of the soundness proof difficult

is that concrete and abstract interpreters are often misaligned, such

that a case of one interpreter relates to multiple cases of the other

interpreter (see figure). For example, a language construct IfZero
that checks if a given number is zero has two outcomes in the

concrete interpreter (is zero, is not zero) but three outcomes in an interval analysis (is zero, contains

zero, does not contain zero). Such misalignment between concrete and abstract interpreter prevents

a piece-wise decomposition of the soundness proof. Conversely, when concrete and abstract

interpreter functions share the same structure we could decompose the proof along that structure.
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We present a novel framework for defining abstract interpreters such that their soundness proofs

become compositional. Our key contributions are that (i) we can abstract from the difference

between concrete and abstract interpreters such that (ii) the soundness proof for the shared parts

is fully compositional and (iii) follows automatically from the soundness of the non-shared parts.

Indeed, most concrete and abstract interpreter are very similar and only differ in a few places

where the interpreters operate on the concrete or abstract domain (e.g., addition of numbers vs

intervals). We propose to make these similarities explicit in a shared parameterized interpreter
function, abstracting from the interpretations of primitive operations on the respective domain.

We realize this abstraction using Haskell’s arrows [Hughes 2000], a generalization of monads.

Instantiating the shared interpreter with arrow instances for the concrete and abstract domain fixes

the respective language semantics. For an abstract interpreter factorized in this way, we obtain the

following benefits when proving soundness:

(1) We can decompose the soundness proof into soundness lemmas about the operations of the

concrete and abstract arrow instances. Each soundness lemma is context free, i.e., independent

from where the operation is used in the shared interpreter. This narrows the scope of the

lemmas and makes them reusable.

(2) Arrows restrict the meta-language of shared interpreters, which solely consists of arrow

expressions. Because arrows are a first-order language, we can use structural induction over

arrow expressions to obtain a generic soundness proof for any shared interpreter composed

of sound arrow operations.

For example, consider the following abstract syntax tree of a shared arrow expression. On the

right, we list the soundness lemmas required to prove concrete and abstract instances of the shared

expression sound. We write e Û⊑ ê to mean that e is soundly approximated by ê:

>>>

ifZero

***

insert 4 arr succ

***

insert 7 arr pred

second

arr abs

f Û⊑ f̂ ∧ д Û⊑ д̂ =⇒ (f ***д) Û⊑ (f̂ *̂**д̂ )

f Û⊑ f̂ ∧ д Û⊑ д̂ =⇒ (f >>>д) Û⊑ (f̂ >̂>>д̂ )

f Û⊑ f̂ =⇒ second f Û⊑�second f̂
f Û⊑ f̂ ∧ д Û⊑ д̂ =⇒ ifZero f д Û⊑�ifZero f̂ д̂

insert n Û⊑�insert n arr succ Û⊑ ârr succ

arr pred Û⊑ ârr pred arr abs Û⊑ ârr abs

Functions >>>, ***, and second are language-independent arrow operations, arr is language-

independent and embeds pure functions into arrow computations, and ifZero and insert are

language-specific operations. The concrete and abstract arrow instances define implementations

for all arrow operations; we denote abstract implementations with a hat *̂** to distinguish them

from concrete definitions ***. With that, we formulate a context-free soundness lemma for each

arrow operation. For example, the lemma of *** is context-free in that it proves soundness of the

operation for all sound subexpressions f , f̂ and д, д̂. This allows us to reuse the same lemma for

every occurrence of *** in the shared expression. Soundness of the shared expression now follows

by structural induction on arrow expressions: Given all leaves are sound and all intermediate nodes

preserve soundness, the composed expression is sound. This way, we have effectively decomposed

the soundness proof into smaller lemmas that can be proved independently and that can be com-

posed to reason about full abstract interpreters. We assert this result as a generic meta-theorem,

stating that any arrow expression is sound if the arrow operations it uses are sound.

We also show that in meta-languages with parametricity [Reynolds 1983], the soundness of

shared code follows as a free theorem [Wadler 1989], given the interface does not leak details of

the abstract interpreter into shared code. Based on this observation, we extract guidelines for the
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interface design to be used in the shared interpreter. In particular, following our guidelines, we get

soundness of pure functions embedded with arr for free, which reduces the number of lemmas

required for our example from 8 to 5. Lastly, parametricity allows us to generalize our framework

to abstract interpreters that share code over interfaces other than arrows.

To evaluate our approach, we implemented a k-CFA analysis for PCF and developed a tree-shape

analysis for Stratego [Visser et al. 1998], a dynamic language for program transformations used in

practice and featuring dynamic scoping of pattern-bound variables, higher-order functions, and

generic tree traversals. For both analyses, we extract a shared parameterized interpreter and prove

it sound compositionally, thus demonstrating the applicability of our approach. We show that,

for the k-CFA analysis, the soundness proof can be decomposed into 16 independently provable

lemmas and for the tree-shape analysis into 27 lemmas. We reflect on our soundness proofs and

explain why it has a reduced complexity and effort compared to conventional soundness proofs.

In summary, we make the following contributions:

• We describe a new approach for organizing abstract interpreters by sharing code with the

concrete interpreter over an interface based on arrows.

• We show that the soundness proof of such abstract interpreters can be conducted composi-

tionally, based on soundness lemmas of the arrow operations.

• We prove a generic meta-theorem showing that any shared interpreter is sound if it is

composed of sound arrow operations. Thus, the soundness proofs of our abstract interpreters

are not only compositional, but proofs about the shared parts actually follow for free.

• We apply parametricity to develop guidelines for the interface design, to obtain soundness of

embedded pure functions for free, and to generalize our approach to interfaces other than

arrows.

• We demonstrate the applicability of our approach through two case studies and show that

our approach reduces the effort and complexity of soundness proofs.

2 WHY AND HOW TOMAKE SOUNDNESS PROOFS COMPOSITIONAL
In this section, we first discuss the complexity and effort of soundness proofs of conventional abstract
interpreters. Then, we describe informally how we can make soundness proofs compositional and

how this reduces proof complexity and effort.

2.1 Conventional Abstract Interpreters
To illustrate the difficulties of soundness proofs of conventional abstract interpreters, we construct

an abstract interpreter for a small example language in Haskell. Expressions in our example language

are either variables, integer literals, additions, or conditionals:

data Expr = Var String | Lit Int | Add Expr Expr

| IfZero Expr Expr Expr

We would like to implement an abstract interpreter for this language that predicts the numbers a

program evaluates to as an interval. For example, consider the following program:

IfZero (Var "x") (Lit 2) (Lit 5),

This program evaluates to 2 if x is bound to 0 and to 5 otherwise. In order to be sound, the abstract

interpreter must approximate all possible results of this program. That is, if the interval for xmay

contain 0, the most precise approximation of this program in the domain of intervals is [2, 5].
We define a conventional concrete interpreter eval and a conventional abstract interpreter �eval

for this language in Figure 1. The definition of the concrete interpreter is standard, hence, we only

explain how the abstract interpreter differs. In case of an addition, the abstract interpreter adds
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type Val = Int

type Env = Map String Val

eval :: Expr -> Env -> Maybe Val

eval e env = case e of

Var x -> lookup x env

Lit n -> return n

Add e1 e2 -> do

v1 <- eval e1 env

v2 <- eval e2 env

return (v1 + v2)

IfZero e1 e2 e3 -> do

v <- eval e1 env

if v == 0

then eval e2 env

else eval e3 env

type V̂al = (Int ,Int)

type Ênv = Map String V̂al

�eval :: Expr -> Ênv -> �Maybe V̂al�eval e env = case e of

Var x -> �lookup x env

Lit n -> return (n,n)

Add e1 e2 -> do

(i1,j1) <- �eval e1 env

(i2,j2) <- �eval e2 env

return (i1+i2, j1+j2)

IfZero e1 e2 e3 -> do

(i1,j1) <- �eval e1 env

if i1 == 0 && j1 == 0

then �eval e2 env

else if j1 < 0 || 0 < i1

then �eval e3 env

else �eval e2 env ⊔ �eval e3 env

Fig. 1. Conventional design of a concrete (left) and abstract interpreter (right) for our example language.

the interval bounds. In case of IfZero, as described in the introduction, the abstract interpreter

distinguishes three cases for the interval resulting from evaluating e1: the interval contains zero
only, does not contain zero, or contains zero and other values. If the interval contains zero only, we

evaluate e2; if the interval does not contain zero, we evaluate e3. But if the interval contains zero
and other values, we evaluate both e2 and e3 and join their results using the least upper bound

operation ⊔.

The abstract interpreter appears to correctly approximate the concrete interpreter’s behavior.

But what exactly do we have to prove to verify the soundness of �eval? We prove the following

soundness proposition for the collecting semantics [Cousot 1999] of eval:

∀ e ∈ Expr. ∀ X ⊆ Env. αV ({eval e ρ | ρ ∈ X }) ⊑ �eval e αE (X )

Here, αV and αE are abstraction functions of Galois connections [Cousot and Cousot 1979] for

values and environments of the interpreters:

αV : P(Val)⇆ V̂al : γV αE : P(Env)⇆ Ênv : γE

αV (X ) = (minX ,maxX ) αE (X ) =
⊔
ρ ∈X

[ x 7→ αV (ρ(x)) | x ∈ dom(ρ)]

The soundness proposition quantifies over sets of environments X , which represent properties of

the program’s free variables. For example, X = {ρ | ρ ∈ Env∧ ∀ (x 7→ v) ∈ ρ. even(v)} describes
environments that map variables to even numbers. The soundness proposition states that, for any

e , all concrete evaluations of e under environments ρ satisfying X must be predicted by a single

abstract evaluation of e under the single abstract environment αE (X ) representing property X .

To prove this soundness proposition for our example, we proceed by structural induction over

the expressions of our language. The soundness proof for Var, Lit and Add is easy, because the inter-
preters align and we only need to reason about the Galois connection αV . The case IfZero e1 e2 e3
is slightly more involved: We perform a case distinction on the result of �eval e1 αE (X ), because

the result prescribes which branch of IfZerowill be analyzed.
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• In case �eval e1 αE (X ) = Just (0, 0), the first branch e2 will be analyzed. From the induction

hypothesis for e1, we learn that αV { eval e1 ρ | ρ ∈ X } ⊆ �eval e1 αE (X ) = Just (0, 0). Since
γV (Just (0, 0)) = {0}, the concrete interpretation eval e1 must also result in 0 and the concrete

interpreter evaluates the the first branch e2. This lets us conclude:

α({ eval (IfZero e1 e2 e3) ρ | ρ ∈ X }) ⊑ α({ eval e2 ρ | ρ ∈ X })

⊑ �eval e2 αE (X ) ⊑ �eval (IfZero e1 e2 e3) αE (X ).

• The case for intervals without 0 is analogous to the previous case.

• The last case is more involved because �eval e1 αE (X ) contains zero and other numbers. In

this case, we have to reason about multiple outcomes of behavior of the concrete interpreter.

Independent of the result of e1, the concrete interpreter will either evaluate the first or second
branch of IfZero and hence:

{eval (IfZero e1 e2 e3) ρ | ρ ∈ X }) ⊆ {eval e2 ρ | ρ ∈ X } ∪ {eval e3 ρ | ρ ∈ X }

This lets us conclude:

αV ({eval (IfZero e1 e2 e3) ρ | ρ ∈ X })

⊑ αV ({eval e2 ρ | ρ ∈ X } ∪ {eval e3 ρ | ρ ∈ X })

⊑ αV ({eval e2 ρ | ρ ∈ X }) ⊔ αV ({eval e3 ρ | ρ ∈ X })

⊑ �eval e2 αE (X ) ⊔ �eval e3 αE (X ) =�eval (IfZero e1 e2 e3) αE (X ).

With this, we have proved soundness for a very simple static analysis of a very simple programming

language. And already the proof was not trivial: For every case in the abstract interpreter, we

had to establish which cases of the concrete interpreter are relevant and then establish that the

abstract interpreter subsumes them all. The complexity and effort of such proofs quickly grows

as language features become more complex. For example, consider another language construct

TryZero e1 e2 e3 of our example language whose concrete semantics is like IfZero e1 e2 e3
except the evaluation defaults to e3 if the evaluation of e1 fails:

eval e env = case e of

TryZero e1 e2 e3 -> case eval e1 env of

Just v | v == 0 -> 1 eval e2 env

| otherwise -> 2 eval e3 env

Nothing -> 3 eval e3 env

When defining an abstract interpreter for TryZero, we need to be careful about how we handle

failed executions. In particular, we often do not know whether a computation definitely succeeds

or fails. To be precise, we use type �Maybe to represent potential failure (JustNothing) alongside
definite success (Just) and definite failure (Nothing). Based on this type, we can implement TryZero
in the abstract interpreter as shown in Figure 2.

In the soundness proof for TryZero, we have to relate 7 cases of the abstract interpreter to 3 cases
of the concrete interpreter as indicated by the diagram on the right. Compared to IfZero, the
soundness proof for TryZero is worse in two ways:

• We have to relate a single case of the abstract interpreter to up to 3 cases of the concrete

interpreter at once. The more cases we need to relate, the higher the proof complexity.
• We have to prove 7 cases of the abstract interpreter sound. The more cases we need to prove,

the higher the proof effort.
These problems are already apparent in the soundness proof for our example language. For precise

abstract interpreters of real-world languages, proof complexity and proof effort quickly make a

soundness proof infeasible. However, it is exactly for analyses of such languages that we need
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�eval :: Expr -> Ênv -> �Maybe V̂al�eval e env = case e of

TryZero e1 e2 e3 -> case �eval e1 env of

Just (i,j)

| (i,j) == (0,0) -> A �eval e2 env

| j < 0 || 0 < i -> B �eval e3 env

| otherwise -> C �eval e2 env ⊔ �eval e3 env

Nothing -> D �eval e3 env

JustNothing (i1,j1)

| (i,j) == (0,0) -> E �eval e2 env ⊔ �eval e3 env

| j < 0 || 0 < i -> F �eval e3 env

| otherwise -> G �eval e2 env ⊔ �eval e3 env

2

1

3

D

C

B

A

E

F

G

Fig. 2. Abstract interpretation of TryZero and how its cases relate to the concrete interpreter.

soundness proofs to ensure all corner cases are covered. Therefore, the question this paper aims to

answer is: How can we make soundness proofs of abstract interpreters simpler and more systematic,

such that soundness proofs of abstract interpreters for real-world languages become feasible?

2.2 Concrete and Abstract Interpreters using Arrows
This paper presents techniques that make soundness proofs of abstract interpreters compositional,

thereby reducing proof complexity and proof effort. A key idea is to factorize the implementation of

a concrete and abstract interpreter into a shared implementation based on Haskell arrows [Hughes

2000]. This factoring aligns the cases of the interpreters and exposes the structure along which

a proof can be decomposed, namely the arrow operations used to define the shared interpreter.

Because arrows are a first-order language and their code is not interleaved with computations

of the meta-language, they induce an induction principle in the meta-language. By proving that

every arrow operation preserves soundness of its arguments, the soundness of the entire shared

interpreter directly follows from this induction principle. With this technique, we can decompose

monolithic soundness proofs into smaller, reusable, and context free soundness lemmas about the

arrow operations of the shared interpreter.

Note, that our technique requires to implement a concrete interpreter in the same meta-language

as the abstract interpreter. This causes extra work if a reference semantics already exists and

is implemented in a different meta-language. However, it simplifies the soundness proof as we

do not have to conduct proofs across different meta-languages. In this subsection, we provide a

brief introduction to arrows, and demonstrate how to use arrows to define a shared interpreter

that corresponds to the concrete and abstract interpreters in the previous subsection. In the next

subsection, we show how this shared interpreter enables a compositional soundness proof.

Arrows, like monads, support effectful computations that, for example, manipulate state, trigger

exceptional control flow, or rely on non-determinism. Arrows generalize monads by internalizing

the input type for a computation. For example, an arrow computation of type (c x y) expects a
value of type x as input and yields a value of type y; c is the higher-order type constructor defining
the arrow. In contrast, monadic computations have type m y and rely on meta-level bindings to

implicitly provide inputs x through the lexical context in which the computation was defined.

The pretty notation [Paterson 2001] for arrows reads similarly to do-notation for monads. The

keyword proc x starts a new arrow computation with input x. The notation y <- f -< x repre-
sents an arrow computation f, which receives its input from the variable x and binds the result to

the variable y. This notation desugars to operations of the Arrow, ArrowChoice, and user-defined

type classes with language-specific operations. This desugaring translates sequential statements
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y <- f -< x; g -< y into the sequential composition operator f >>> g. For arrow expressions

where variables span multiple statements as in y1 <- f -< x1; y2 <- g -< x2; h -< (y1,y2) the
notation desugars into the parallel composition operator *** as in (f *** g) >>> h. Case expres-
sions are translated to a pure function that destructs a sum type into an Either type, embedded into

arrows with arr :: (x -> y) -> c x y, followed by the choice operator ||| of the ArrowChoice
type class that encodes the bodies of each case. For example, here is an example desugaring (⇝) of

an arrow expression:

proc e -> case e of { Var x -> f -< x; Lit y -> g -< y }

⇝ arr (\e -> case e of { Var x -> Left x; Lit y -> Right y }) >>> (f ||| g)

Appendix A contains an illustrative example that the reader may find helpful for understanding

how the pretty notation for arrows desugars into arrow expressions. For the full details on how

arrows desugar, we refer the reader to the work of Paterson [2001].

In Figure 3, we use arrows to describe a shared interpreter eval' that generalizes both eval
and �eval from the previous subsection. To do so, we extract the operations that differ between

the concrete and abstract interpreter into a type class IsVal. Each type class member of IsVal in
Figure 3 represents a language-specific operation. lookup defines a variable lookup operation as an

arrow from a string to the value type v that the type class is parameterized by. The ifZero operation
is parameterized by two arrows as continuations and takes as argument a triple of a value and

arguments x and y for the continuations. If the value in the triple is zero, the first continuation

is invoked using x; otherwise, the second continuation is invoked using y. The try operation is

parameterized by three arrows: one for computing a value (or raising an error); one for dispatching

on the value resulting from invoking the first arrow if no error was raised; and one for the case

where an error was raised. The fix operator of the type class ArrowFix (also Figure 3) computes the

fixpoint of the shared interpreter. This allows concrete and abstract interpreter to employ different

fixpoint strategies.

To define the concrete and abstract language semantics, we instantiate the shared interpreter

with two different arrow instances. We do this in by defining two arrow types Interp and �Interp
that define instances for the Arrow, ArrowChoice, ArrowFix, and IsValue type classes. In Figure 4,

we show the arrow types, their instances for IsValue, and the top-level interpreters eval and�eval that instantiated the shared interpreter eval'. The shared interpreter completely desugars

into operations of the arrow type classes implemented by Interp and �Interp. Ultimately, the two

instantiated interpreters have the same semantics as the interpreters of Section 2.1. Note that since

the shared interpreter describes a parameterized semantics, we can define new alternative abstract

domains by instantiating the shared interpreter with another arrow instance.

2.3 Compositional Soundness Proofs of Abstract Interpreters
The previous section described how to define concrete and abstract interpreters in a way that

common code is shared between the two. This organization of concrete and abstract interpreter

allows us to prove soundness of interpreters like eval and �eval in Figure 4 compositionally based

on separate soundness preservation lemmas for each arrow operation. For our example, we prove the

following soundness preservation lemmas, one for each operation of the IsVal, Arrow, ArrowChoice,
and ArrowFix type classes. We use f Û⊑ f̂ as a compact notation for the soundness proposition.

• arr f Û⊑ ârr f for each pure function f in the shared interpreter,

• lit Û⊑ l̂it, add Û⊑ âdd, lookup Û⊑�lookup,
• if f Û⊑ f̂ and д Û⊑ д̂ then ifZero f д Û⊑�ifZero f̂ д̂
• if f Û⊑ f̂ and д Û⊑ д̂ and h Û⊑ ĥ then try f д h Û⊑ t̂ry f̂ д̂ ĥ
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data Expr = Var String

| Lit Int

| Add Expr Expr

| IfZero Expr Expr Expr

| TryZero Expr Expr Expr

class ArrowFix x y c where

fix :: (c x y -> c x y) -> c x y

class ArrowChoice c => IsVal v c where

lookup :: c String v

lit :: c Int v

add :: c (v, v) v

ifZero :: c x v -> c y v -> c (v,(x,y)) v

try :: c x y -> c y v -> c x v -> c x v

eval ' :: IsVal v c => c Expr v -> c Expr v

eval ' ev = proc e -> case e of

Var x -> lookup -< x

Lit n -> lit -< n

Add e1 e2 -> do

v1 <- ev -< e1; v2 <- ev -< e2

add -< (v1,v2)

IfZero e1 e2 e3 -> do

v <- ev -< e1

ifZero ev ev -< (v,(e2,e3))

TryZero e1 e2 e3 ->

try (proc (e1,x) -> do

v <- ev -< e1

returnA -< (v,x))

(ifZero ev ev)

(proc (_,(_,e3)) -> ev -< e3)

-< (e1 ,(e2,e3))

Fig. 3. Shared interpreter based on arrows.

type Interp a b = Env -> a -> Maybe b

instance IsVal Val Interp where

lookup = \e x -> Map.lookup x e

lit = arr id

add = arr (\(x,y) -> x + y)

ifZero f g = proc (v,(x,y)) ->

if v == 0

then f -< x

else g -< y

try f g h = \e x -> case f e x of

Just y -> g e y

Nothing -> h e x

eval :: Interp Expr Val

eval = fix eval '

type �Interp a b = Ênv -> a -> �Maybe b

instance IsVal V̂al �Interp where�lookup = \e x -> to�Maybe (Map.lookup e x)

l̂it = arr (\n -> (n,n))

âdd = arr (\((i1 ,j1),(i2,j2)) ->

(i1+i2,j1+j2))�ifZero f g = proc ((i,j),(x,y)) ->

if i == 0 && j == 0

then f -< x

else if j < 0 || 0 < i

then g -< y

else (f -< x) ⊔ (g -< y)

t̂ry f g h = \e x -> case f e x of

Just y -> g e y

Nothing -> h e x

JustNothing y -> g e y ⊔ h e x

�eval :: �Interp Expr V̂al�eval = fix eval '

Fig. 4. Arrow instances for the concrete interpreter (left) and the abstract interpreter (right).

• if f Û⊑ f̂ and д Û⊑ д̂ then f >>> д Û⊑ f̂ >̂>> д̂
• if f Û⊑ f̂ and д Û⊑ д̂ then f *** д Û⊑ f̂ *̂** д̂
• if f Û⊑ f̂ and д Û⊑ д̂ then f ||| д Û⊑ f̂ |̂|| д̂
• if

[∀x , x̂ . x Û⊑ x̂ ⇒ f (x) Û⊑ f (x̂)
]

then fix f Û⊑ f̂ix f
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1

2
B

A

C

3

4
E

D

F

Fig. 5. Soundness lemmas for the try operation (left) and for the ifZero operation (right).

The fixpoint combinator fix required a different soundness lemma, because it is the only higher-

order construct compared to the otherwise first-order arrow language. To keep the rest of the

shared arrow code first-order, we only allow one occurrence of fix at the very top-level of the

interpreters.

For soundness of the interpreters eval Û⊑�eval, we first unfold the definition of eval and �eval
which gives us fix eval′ Û⊑ f̂ix eval′. We then use the lemma for fix, which leaves us to prove

eval′ x Û⊑eval′ x̂ given x Û⊑ x̂ . Because eval′ x and eval′ x̂ refer to an arrow expression with the

same structure, except for occurrences of x and x̂ , we can use structural induction over the arrow

expressions. The cases of this induction are always instances of the soundness lemmas for the

arrow operations from above and the assumption x Û⊑ x̂ . This proves that the top-level interpreters
are sound.

But what impact does compositional soundness proofs have on proof complexity and proof

effort? Let us compare the proof of TryZero to the non-compositional proof from the previous

subsection. Before, we had to prove 7 cases of the abstract interpreter and relate them to up to

3 cases of the concrete interpreter. Now, TryZero is composed of try and ifZero. Their soundness
lemmas are simpler and can be proved independently as illustrated in Figure 5. Moreover, the

soundness lemmas are independent of their specific usage in the shared interpreter and can be

reused whenever the shared interpreter makes use of try or ifZero. In particular, we reused the

lemma for ifZero twice: Once for interpreting IfZero and once for interpreting TryZero.
To summarize, compared to conventional soundness proofs, in compositional soundness proofs

we have to prove smaller lemmas that are context-free, which reduces the proof complexity.

Furthermore, we have to prove less cases and lemmas are reused, which reduces the proof effort. In

the next two sections we describe our framework more formally.

3 SOUNDNESS PROPOSITION FOR ARROWS
To construct compositional soundness proofs, we first need a soundness proposition Û⊑ that is

applicable for all intermediate expressions of the interpreters. For example, the shared interpreter of

Figure 3 uses the ifZero operator with return type c (v,(Expr,Expr)) v. This type is instantiated
in the concrete interpreter with arrow type

Interp (Val,(Expr,Expr)) Val

and in the abstract interpreter with arrow type�Interp (V̂al,(Expr,Expr)) V̂al.
To relate values of these two types in our soundness proposition, we need to define a Galois

connection [Cousot and Cousot 1979] between these arrow types. However, in general, our shared

interpreter makes use of arrows of many different types, many which of which only become

apparent after arrow desugaring. For example, the composition operator >>> is used by the shared

interpreter with various types ranging from Val and Expr to tuples, Maybe, Either, and combinations

thereof. To relate all types with a Galois connections, we require a systematic way for constructing

Galois connections and, based on that, soundness propositions.
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3.1 Systematic Way for Constructing Galois Connections
A well-known technique for constructing Galois connections is described by Nielson et al. [1999,

Lemma 4.23]. A Galois connection α : PA ⇄ Â : γ can be defined by an embedding function

ι : A → Â, such that the abstraction function is given by α(X ) =
⊔
{ι(x) | x ∈ X }. Then the

concretization function exists and is uniquely determined by γ (x̂) = {x | α(x) ⊑ x̂}. In other words,

we only need to define an embedding function and we obtain the Galois connection for free.

First, we define embedding functions for abstracted base types. For example, for an interval anal-

ysis, we can define an embedding function for numeric values ι : Int→ Interval by ι(n) = [n,n].
Then the abstraction function sends the set {1, 3, 5} to

⊔
{ι(1), ι(3), ι(5)} =

⊔
{[1, 1], [3, 3], [5, 5]} =

[1, 5]. Second, for compound types, we define the embedding function component-wise. For example,

for products we define the embedding function ι(A,B) : (A,B) → (Â, B̂) by ι(A,B)(a,b) = (ιA(a), ιB (b)),
given embeddings ιA : A → Â and ιB : B → B̂. This approach naturally extends to other compound

data types we face in Haskell, such as lists [a], Maybe a, Either a b, and so on. Note that data types
in Haskell also have a coinductive interpretation, e.g., lists can be infinite. However, in this work

we only consider inductive interpretations of datatypes.

However, the construction of Galois connections with embedding functions ι : A → Â places

requirements on the concrete domain A and the abstract domain Â. First, it assumes that both

domains have a preorder ⊏A respectively ⊏Â. Second, it assumes that the abstract domain Â is

finitely complete, that is, all elements x and y have a least upper bound x ⊔Â y. While it is easy

to define preorders for the types occurring in our interpreter, these orders often are not finitely

complete. For example, type Either Int String has no least upper bound for Left 5 and Right "x".
Fortunately, we can lift a non-completely ordered type X to a finitely complete ordered type X⊤

.

The lifting X⊤
adds a greatest element ⊤ to the type X , such that all incomparable elements now

have a least upper bound:

x1 ⊑X⊤ x2 iff x2 = ⊤ ∨ x1 ⊑X x2

For example, the lifted type (Either Int String)⊤ has all least upper bounds, such as

(Left 5) ⊔ (Right "x") = ⊤.

Based on embedding functions ιX , partial orders ⊏X , and the lifting X⊤
, we can systematically

construct Galois connections for all types that occurring in our interpreters. What is left, is to

define the soundness proposition for arrow types Interp and �Interp.
3.2 Soundness Proposition for Arrows
It is not possible to give a general definition of a soundness proposition for arbitrary arrows, because

arrows and their soundness propositions are analysis-specific. However, we can define a soundness

proposition for specific classes of arrows. In this section, we define a soundness proposition for

Kleisli arrows [Hughes 2000]. Kleisli arrows are functions A → M(B) parameterized by a monad

M . It is well-known that monads are expressive enough to describe a wide range of effects in

programming languages [Liang et al. 1995; Moggi 1991; Wadler 1995]. For example, we can describe

the two interpreter arrows of section Section 2.2 as Kleisli arrows:

Interp(A,B) = A → M(B) �Interp(A,B) = A → M̂(B)

M(B) = Env→ Maybe B M̂(B) = Ênv → �Maybe B
This way, Kleisli arrows and their soundness proposition serve as a good starting point to define

analysis-specific soundness propositions.

We define the soundness proposition for Kleisli arrows for the forward collecting semantics
[Cousot and Cousot 1992] of the concrete interpreter. The forward collecting semantics of a
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function f : A → B describes the strongest post-condition { f (x) | x ∈ X } of f under a pre-

conditionX ⊆ A over the inputs of f . For example, the strongest post-condition for f (x) = x +x for

the pre-condition N is the set of even numbers. In our scenario, we describe the forward collecting

semantics of f : A → B as a single function λX .{ f (x) | x ∈ X } of type P(A) → P(B). Before we
can define the soundness proposition for Kleisli arrows, we first need to define a Galois connection

between the forward collecting semantics of the concrete Kleisli arrow and the ⊤-lifted abstract

Kleisli arrow on the underlying function space [Nielson et al. 1999, page 253]:

αA,M (B) : (PA → P(M(B)))⇄
(
Â⊤ → M̂(B̂)⊤

)
: γA,M (B)

αA,M (B)(f ) = αM (B) ◦ f ◦ γÂ γA,M (B)( f̂ ) = γM̂ (B̂) ◦ f̂ ◦ αA

The Galois connection for Kleisli arrows uses Galois connections αA : PA ⇆ Â⊤
: γÂ and

αM (B) : P(M(B))⇆ M̂(B̂)⊤ : γM̂ (B̂) constructed with the techniques described in Section 3.1. With

the Galois connection between the concrete and abstract Kleisli arrows, we are ready to state

soundness proposition for Kleisli arrows.

Definition 1 (Soundness proposition for Kleisli arrows). Let Interp and �Interp be Kleisli arrows.

Then, a computation f ∈ Interp(A,B) is sound with respect to a computation f̂ ∈ �Interp(A,B)
f Û⊑ f̂ iff αA,M (B)(λX . { f (x) | x ∈ X })) ⊑ f̂ ⊤

In this definition, f̂ ⊤ is the ⊤-lifting of function f̂ :

f̂ ⊤(x) =

{
⊤, x = ⊤

f̂ (x), x , ⊤

This definition is well-defined for Kleisli arrows over any typesA and B for which Galois connec-

tions αA and αM (B) exist. Given these Galois connections, we can use this soundness proposition for

all parts of the interpreters, making it a key ingredient for constructing compositional soundness

proofs.

4 COMPOSITIONAL SOUNDNESS FOR ARROW-BASED ABSTRACT INTERPRETERS
In this section, we present how our framework enables compositional soundness proofs and we

prove that the composition always succeeds. Our framework is language-agnostic and can be used

for any abstract interpreter satisfying the following two requirements:

• The concrete interpreter and abstract interpreter must share their implementation. That is,

eval = fix eval′ and �eval = f̂ix eval′ for some eval'.
• The shared interpreter eval'must be an arrow computation.

The first requirement enables compositional soundness proofs, because the proof can be decomposed

along the structure of the shared code. The second requirement ensures that the recomposition of

subproofs must succeed. Together, they provide a powerful framework where all shared code is

sound by construction and users only have to prove soundness for the differing code: the concrete

and abstract implementations of arrow operations.

Arrows induce an induction principle because arrow notation [Paterson 2001] (used throughout

the examples in this paper) fully desugars to operations of the arrow type classes and the residual

code does not contain any non-arrow constructs of the meta-language anymore. Furthermore,

the arrow type classes can be described by an endofunctor F [Hamana and Fiore 2011] and the

arrow instances as algebras of this endofunctor. The initial F -algebra induces the desired induction

principle. For example, the initial F -algebra for the shared interpreter of Figure 3 is described by

the following generalized algebraic datatype (GADT) that enumerates all arrow expressions that

can be described over the IsVal type class:
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data AExp :: C -> C -> Set where

Lit :: AExp Int v

Add :: AExp (v,v) v

Lookup :: AExp String v

IfZero :: AExp x v -> AExp y v -> AExp (v,(x,y)) v

Try :: AExp x y -> AExp y v -> AExp x v -> AExp x v

(>>>) :: AExp x y -> AExp y z -> AExp x z

(***) :: AExp x y -> AExp u v -> AExp (x,u) (y,v)

(|||) :: AExp x z -> AExp y z -> AExp (Either x y) z

Arr1 :: AExp A1 B1 . . . Arrn :: AExp An Bn

The datatype contains one constructor for each operation of the IsVal type class and its super-

classes Arrow and ArrowChoice. It does not contain an operation for the fixpoint combinator, which

requires special treatment as we discuss later. Besides these arrow operations, the desugaring arrow

computations also generates pure functions that are embedded into arrow computations using the

arr operation. To avoid a higher-order constructor Arr :: (a -> b) -> AExp a b, we enumerate

each of the pure functions as individual constructors Arri . The initial F-algebra AExp then induces

the following induction principle for predicates P .

P(Lit) P(Add) P(Lookup)
P(f1) ∧ P(f2) =⇒ P(IfZero f1 f2)

P(f1) ∧ P(f2) ∧ P(f3) =⇒ P(Try f1 f2 f3)
P(f1) ∧ P(f2) =⇒ P(f1>>>f2)
P(f1) ∧ P(f2) =⇒ P(f1***f2)
P(f1) ∧ P(f2) =⇒ P(f1+++f2)
P(Arr1) . . . P(Arrn)

∀A,B ∈ C. ∀e ∈ AExp A B. P(e)

This induction principle allows us to decompose soundness proofs because of the shared imple-

mentation. Specifically, we set

P(e) iff e Û⊑ ê,

where e refers to the concrete instance of the arrow code and ê to the abstract instance, i.e., the

respective F -algebra. With this predicate, the premises of the induction principle exactly correspond

to the soundness preservation lemmas discussed in Section 2.3. For example:

f1 Û⊑ f̂1 ∧ f2 Û⊑ f̂2 =⇒ (f1>>>f2) Û⊑( f̂1>̂>> f̂2)

Thus, the induction principle shows that all shared arrow code is sound if the soundness preservation

lemmas hold. This is the essence of decomposing the soundness proof of an arrow-based abstract

interpreter.

However, before we can state our main soundness theorem, we need to add support for fixpoint

combinators. In Section 2.3, we applied concrete and abstract fixpoint combinators fix and f̂ix to

the shared interpreter. Since fixpoint combinators are higher-order functions of the form

Fix : (AExp A B → AExp A B) → AExp A B,

adding them to our GADT would break the induction principle, because the datatype would not be

strictly positive [Coquand and Paulin-Mohring 1990]. Instead, we adapt the soundness proposition

for fixpoint combinators by Cousot and Cousot [1992, Proposition 4.3]:
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Definition 2. A fixpoint combinator fix is sound with respect to f̂ix iff fix f Û⊑ f̂ix f for all

soundness preserving functions fC : C(A,B) → C(A,B), that is:[∀x , x̂ . x Û⊑ x̂ ⇒ f (x) Û⊑ f (x̂ )
]
=⇒ fix f Û⊑ f̂ix f .

Now we are ready to state our main soundness theorem:

Theorem 3 (Soundness of Abstract Interpreters based on Arrows). For a given concrete
interpreter eval : Interp(A,B) and abstract interpreter �eval : �Interp(A,B) defined by eval =

fix eval′ and �eval = f̂ix eval′ with a shared implementation eval′C : C(A,B) → C(A,B) (natural
in C [Mac Lane 1978])1 over a functor F with an initial algebra, soundness eval Û⊑�eval follows from
(i) soundness of the fixpoint combinators fix and f̂ix and (ii) the soundness preservation lemmas of F .

Proof. From the soundness proposition of the fixpoint combinators, we know that eval Û⊑�eval
if eval′(x) Û⊑eval′(x̂ ) for all x ∈ Interp(A,B), x̂ ∈ �Interp(A,B)with x Û⊑ x̂ . Because eval' is natural
in the arrow type C , the arrow expressions eval′(x) and eval′(x̂ ) have the same structure except

for occurrences of x and x̂ . Thus eval′(x) Û⊑eval′(x̂ ) follows by structural induction, the soundness

preservation lemmas, and the assumption x Û⊑ x̂ . □

Thus, to prove an abstract interpreter based on arrows sound, it suffices to use a sound fixpoint

combinator and to verify the soundness preservation lemmas. Since each soundness preservation

lemma is concerned with a single arrow operation only, the soundness proof of the abstract

interpreter decomposes into small, manageable proof obligations.

The naturality of eval'C in the arrow typeC is crucial in this proof of Theorem 3. It ensures that

the shared interpreter does not produce a structurally different arrow expression when instantiated

with the concrete and abstract arrow types. Only if the structure of the interpreters is the same,

we can apply the induction principle. In general, we can ensure this if the shared interpreter is

parametric in the arrow type.

One shortcoming of our proof method, though, is the handling of the pure functions Arr1 . . .Arrn
that the arrow desugaring generates. Proving soundness for each pure function is tedious and

usually uninteresting. In the next section, we use parametricity [Reynolds 1983], a property of

parametric polymorphism, to describe interface guidelines such that all pure functions are sound
by a free theorem of parametricity.

5 INTERFACE DESIGN AND PARAMETRICITY
The main goal of this paper is to reason about soundness of the operations of the interpreters, rather

than about composed code of the shared interpreter itself. The design of the interface influences

how much reasoning about shared code is necessary, if any at all. In this section, we provide

guidelines for how to design interfaces such that soundness of pure functions follows as a free

theorem of parametricity.

To this end, let us revisit the interface for IfZero from Section 2.2:

ifZero :: c x v -> c y v -> c (v,(x,y)) v

Instead of providing two continuations that are called when the argument value is zero or not, we

could have designed an operation isZero, that returns a Boolean value that represents its outcome:

data �Bool = True | False | Top

isZero :: c v �Bool
eval ' ev = proc e -> case e of

1eval'C is natural in C iff for all f : C(A, B) → D(A, B), f ◦ eval′C = eval
′
D ◦ f
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IfZero e1 e2 e3 -> do

b <- isZero <<< ev -< e1

case b of

True -> ev -< e2

False -> ev -< e3

Top -> (ev -< e2) ⊔ (ev -< e3)

The value Top is solely used by the abstract interpreter to express uncertainty about whether a

value is zero. The concrete instance of isZero never returns Top because it is always certain if the

value is zero. Although this definition describes an alternative but equivalent semantics, there are

two problems:

(1) The shared interpreter now describes behavior that is specific to the abstract interpreter

but not the concrete semantics. The interface of the shared interpreter leaks details of the
abstract interpreter into shared code.

(2) Proving soundness of the instantiated shared interpreter requires reasoning about more code

than just the arrow operations it is comprised of. In particular, we have to consider the entire

case expression in the shared code to prove soundness. The interface design of isZero does
not allow us to decompose the soundness proof.

But is there a metric that helps us identify interface operations that leak details of the abstract

interpreter? The answer can be found in a property called parametricity [Reynolds 1983], a property

of parametric polymorphism. The key idea of parametricity is that types can be interpreted as

relations and terms in related environments yield related results [Wadler 1989].

To set the stage, we recall the definition of Reynolds’ parametricity [Reynolds 1983] due to Ghani

et al. [2015]. Well-typed System F programs e are identified by the typing judgment Γ,∆ ⊢ e : τ ,
where τ is a typewith type variables closed under Γ and∆ is the regular typing context. Parametricity

describes two parallel interpretations for System F contexts, types and terms, that work in lock-step:

An object interpretation JT Ko : Set |Γ | → Set that interprets types as sets and terms as functions,

and a relational interpretation JT Kr : Rel |Γ |(A,B) → Rel(JT KoA, JT KoB) that interprets types as
relations and terms as relation preserving functions. Each interpretation takes extra arguments

based on |Γ |, the number of type variables in the context Γ.
How these two interpretations interact is described by the following main theorem of parametric-

ity [Reynolds 1983]:

Theorem 4 (Abstraction Theorem). Let A,B ∈ Set |Γ | , R ∈ Rel |Γ |(A,B), a ∈ J∆KoA and b ∈

J∆KoB. For every term Γ,∆ ⊢ e : τ , if (a,b) ∈ J∆KrR, then (JeKoA a, JeKoB b) ∈ Jτ Kr (R). □

More informally, if a and b are instances of the typing context ∆ and are related by R, then a

term e with context ∆ applied to a and b are related by R. If we choose R to be the soundness

proposition for arrow types, the abstraction theorem provides an alternative way to prove soundness

of abstract interpreters with a shared implementation. We prove this as a theorem below. However,

since arrows are higher-order types of kind * → * → *, we in fact require the abstraction

theorem for higher-order parametricity that holds for System Fω [Atkey 2012]. The general idea

of the abstraction theorem for first-order parametricity carries over to the one for higher-order

parametricity. Therefore, we omit the definitions for higher-order parametricity for simplicity and

brevity.

Theorem 5. In System Fω , soundness of abstract interpreters that share a common implementation
with the concrete interpreter follows from the soundness lemmas for operations of its interface.
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Proof. First, we desugar the type class IsValue into a record that is passed in as a dictionary

[Hall et al. 1996]. This allows us to type check eval' with the following judgement:

{c : * → * → *, v : *}, {dict : IsValue c v} ⊢ eval' : c Expr v → c Expr v

We now apply the abstraction theorem for higher-order parametricity as follows. The typing

variable context has type variables for the arrow type c and value type v, hence, for A and B
we choose the tuples (Interp,Val) and (�Interp, V̂al) that instantiate the respective arrow and

value type. Furthermore, for the relation R we have to define relations on arrows and values. For

the relation on values, we choose v Û⊑Val v̂ iff αVal(v) ⊑ v̂ , where αVal : P(Val) → V̂al is the

abstraction function for values. Because arrows are higher-kinded types, the relation on arrows

is parameterized by relations R over the domain and Q over the codomain of the arrow. For the

soundness relation on arrows, we choose

f Û⊑Interp f̂ iff (a, â) ∈ R =⇒ (f (a), f̂ (â)) ∈ Q for all a ∈ A, â ∈ Â.

If we instantiate R and Q with the relation α(x) ⊑ x̂ , we obtain the original soundness proposition:

f Û⊑Interp f̂ iff αA(a) ⊑ â =⇒ αÂ(f (a)) ⊑ f̂ (â) for all a ∈ A, â ∈ Â.

If we use the abstraction theorem with these definitions, we obtain the following rule.

a ∈ JIsValue c vKo(Interp,Val)
b ∈ JIsValue c vKo(�Interp, V̂al)

(a,b) ∈ JIsValue c vKr ( Û⊑Interp, Û⊑Val)

(Jeval'Ko(Interp,Val) a, Jeval'Ko(�Interp, V̂al) b) ∈ Jc Expr v → c Expr vKr ( Û⊑Interp, Û⊑Val)

The rule says, given two instances a andb for the interfaceIsValue and a andb satisfy the soundness
preservation lemmas of IsValue, then the shared interpreter eval' instantiated with the instance a
is sound with respect to eval' instantiated with b. □

The main consequence of Theorem 5 is that we do not have to reason about soundness of shared

code, since it follows as a free theorem from parametricity. In particular, this relieves us from having

to prove soundness of individual pure functions in arr. Instead, we obtain a generic soundness

lemma for the arr operation itself:

(arr, ârr) ∈ J∀x,y. (x → y) → c x yKr ( Û⊑Interp).

Because all pure functions f in the shared interpreter are shared code, this lemma guarantees

(arr f Û⊑ ârr f ).
Theorem 5 can also help us understand how to design the interface such that the each arrow

operation is compositionally sound. When a soundness proof for an arrow operation fails, it usually

fails with the approach based on parametricity as well as with the approach from Section 4. However,

the approach based on parametricity can tell us why a proof failed. To this end, it is instructive to

compare the soundness lemmas of Theorem 5 to the corresponding soundness lemmas of Theorem 3.

For example, for the composition operator >>>, Theorem 5 requires

(>>>, >̂>>) ∈ J∀x,y,z. c x y → c y z → c x zKr ( Û⊑Interp)

whereas Theorem 3 requires

f1 Û⊑ f̂1 ∧ f2 Û⊑ f̂2 =⇒ (f1>>>f2) Û⊑( f̂1>̂>> f̂2).

The soundness lemmas have almost the same meaning, except that the orderings used in the former

lemma are fixed by the relational interpretation J−Kr rather than chosen by us. This is an important
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distinction because it restricts how we can design our interface, while still being able to prove

soundness compositionally.

For example, let us revisit the flawed version of isZero introduced earlier in this section. Observe

that we cannot prove ifZero Û@�ifZero using parametricity either:

(isZero,�isZero) < Jc v �BoolKr ( Û⊑Interp, Û⊑Val)

The problem is that the ordering for �Bool is determined by its relational interpretation based on

the underlying sum type:

J�BoolKr = {(True,True), (False,False), (Top,Top)}.

However, we require that Top is the greatest element to be able to prove the soundness lemma for

isZero, which is not the case for this ordering. The underlying problem is that we exposed the type�Bool with non-standard ordering to the shared interpreter. This problem exists not only for �Bool,
but for all types with non-standard ordering, such as values, environments, etc.

These observations lead us to the following guideline for good interface design of shared inter-

preters, helping us to avoid leaking interfaces:

Guideline. An interface of a shared interpreter is good if its operations do not expose types with

non-standard orderings. Instead, non-standard ordered types in the abstract interpreter must be

hidden from the interface by using universal quantification.

To summarize, the abstraction theorem for meta-languages with parametricity provides an

alternative way to prove soundness of abstract interpreters that share code. This drastically reduces

the required effort of the soundness proof, because shared code is sound by a free theorem of

parametricity. Furthermore, the abstraction theorem provides us with a useful guideline for how to

design our interface. Finally, nothing in the proof of Theorem 5 is specific to arrows. In particular,

we are not making use of the induction principle for arrows and use the abstraction theorem instead.

This should allow us to apply Theorem 5 to abstract interpreters that share code with the concrete

interpreter using an interface other than arrows. We have not explored this further so far.

6 CASE STUDIES
This paper presents a framework for compositional soundness proofs. In this section, we report on

two case studies that we conducted to answer the following research questions:

(RQ1) Is our technique applicable to interesting languages and interesting static analyses?

(RQ2) Does our technique reduce the complexity and effort of soundness proofs?

The case studies involved constructing shared interpreters for Stratego and PCF, developing concrete

and abstract arrow instances, and proving the instantiated interpreters sound. For Stratego, we

developed a tree-shape analysis as abstract arrow instance; for PCF, we implemented an advanced

control-flow analysis (k-CFA) as abstract arrow instance.
2

6.1 Tree-Shape Analysis for Stratego
We developed a sound abstract interpreter for Stratego [Visser et al. 1998], a real-world language

for the implementation of program transformations that operate on abstract syntax trees akin to

s-expressions. Stratego is being used in various projects to define interpreters [Dolstra and Visser

2002], refactorings [de Jonge and Visser 2012], desugarings [Erdweg et al. 2011], and compilers

2
All code of the case studies is open source and can be found at https://github.com/svenkeidel/sturdy/. The proofs can be

found in the extended version of this paper at https://arxiv.org/.
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[Avgustinov et al. 2007; Bagge and Kalleberg 2006; Economopoulos and Fischer 2011]. Further-

more, Stratego is used to compile programs of WebDSL [Visser 2007], a domain-specific web-

programming language in which, for example, the website conf.researchr.org of ICFP and others is

implemented [van Chastelet et al. 2015].

Stratego transformations operate on untyped terms using rewrite rules and strategies as illus-

trated by the following simple evaluator for arithmetic expressions:

rules

reduce: Add(Succ(m), n) -> Succ(Add(m,n))

reduce: Add(Zero(), n) -> n

strategies

main = downup(try(reduce))

The strategy mainwalks the expression tree down and up again, and tries to reduce each visited

node using the rewriting rule reduce. Rule reduce consists of two alternatives reduce: pat -> gen
that try to match pat and, if successful, generate gen. Stratego has many language features that

make it a challenging language to statically analyze, including dynamic scoping of pattern-bound

variables, higher-order functions, and generic tree traversals.

Stratego provides a rich set of abstractions for program transformations. These abstractions

desugar into a core language for Stratego with just 12 constructs [Bravenboer et al. 2006; Visser et al.

1998]. We developed a shared interpreter based on arrows for this core language. For the interface of

the shared interpreter, we identified 27 operations, of which 9 operations are language-independent

and 18 operations are specific to Stratego. The language-specific operations consist of 10 operations

for terms, 6 for term environments, and 2 for strategy environments.

We instantiated the shared interpreter with Kleisli arrows for the concrete and abstract domain.

The concrete domain uses the usual interpretation of terms and environments. In the abstract

domain, we approximate terms as a set of term patterns containing wildcards ∗. For example, the

abstract term {Zero(),Add(∗, ∗)} represents the set of concrete terms containing Zero() and all

terms with root Add. This way, our abstract arrow instance realizes a tree-shape analysis [Keidel

and Erdweg 2017] that Stratego developers can use to predict the shape of trees a transformation

will produce when run.

For the concrete instance of ArrowFix, we compute the usual least fixpoint. However, since the

abstract domain of sets of term patterns is infinite, the least fixpoint is not computable for the abstract

domain. Therefore, for the abstract instance of ArrowFix, we approximate the greatest fixpoint

instead. Specifically, our fixpoint combinator keeps track of the recursive depth of the interpreter

and yields ⊤ for recursive calls whose depth exceeds a certain threshold. This produces a finite

approximation of the infinite set of terms that can be produced by a given program transformation.

The precision of the abstract interpreter increases with more iterations.

We have verified the soundness of our tree-shape analysis by proving that abstract instantiations

of the shared interpreter approximates the concrete instantiation. The soundness proof is completely

compositional. We decomposed the proof into 27 soundness lemmas, one for each operation in

the interface of the shared interpreter. All operations in the interface conform to the guidelines

of interface design of Section 5, and hence soundness of all pure arr expressions follows as a free
theorem due to the parametricity of our meta-language Haskell. The soundness of the instantiated

interpreters then follows from Theorem 3 and the 27 soundness lemmas.

To reflect on the complexity and effort of the soundness proof (RQ2), we want to highlight the

soundness proof of the implementation of strategy calls. We show the code of the shared interpreter

in Figure 6. A strategy in Stratego accepts two kinds of arguments, strategy arguments and term
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call :: ... => StratVar -> [Strat] -> [TermVar] -> (Strat -> c t t) -> c t t

call f actualStratArgs actualTermArgs ev = proc a -> do

senv <- readStratEnv -< ()

case Map.lookup f senv of

Just (Closure formalStratArgs formalTermArgs body senv ') -> do

tenv <- getTermEnv -< ()

mapA bindTermArg -< zip actualTermArgs formalTermArgs

let senv '' = foldl bindStratArgs (if Map.null senv ' then senv else senv ')

(zip formalStratArgs actualStratArgs)

b <- localStratEnv senv '' (ev body) -<< a

tenv ' <- getTermEnv -< ()

putTermEnv <<< unionTermEnvs -< (formalTermArgs ,tenv ,tenv ')

returnA -< b

Nothing -> fail -< ()

where

bindTermArg = proc (actual ,formal) ->

lookupTerm (proc t -> insertTerm -< (formal ,t)) fail -<< actual

bindStratArgs senv (v,Call v' [] []) senv =

case Map.lookup v' senv of

Just s -> Map.insert v s senv

_ -> error $ "unknown␣strategy:␣" ++ show v'

bindStratArgs senv (v,s) = Map.insert v (Closure [] [] s senv) senv

Fig. 6. Shared implementation of calls of strategies.

arguments. Hence, the interpreter has to bind these two kinds of arguments in the respective

environment and then invoke the interpreter recursively on the body of the called strategy.

Traditionally, proving soundness of the concrete and abstract instantiations of this code is a

severe challenge: The complexity of the code would be reflected in the proof. With our technique,

we can decompose the proof into 2 soundness lemmas about strategy environments (readStratEnv,
localStratEnv), 6 lemmas about term environments (lookupTerm, insertTerm, unionTermEnvs,
getTermEnv, putTermEnv), a few lemmas about language-independent arrow operations, and various

lemmas about embedded pure functions. Each of these lemmas is manageable and can be proved

in isolation, thus reducing the proof complexity. Our approach also reduces the proof effort. First,

some lemmas can be reused in other cases of the interpreter, such as the ones for term environments,

which are needed for pattern matching as well. Second, we obtain the soundness lemmas for appli-

cations of embedded pure functions Map.lookup, zip, and foldl as free theorems of parametricity.

And third, the soundness of the shared interpreter follows for free from the induction principle of

Theorem 3.

In summary, we developed an arrow-based shared interpreter for Stratego together with a

concrete and an abstract arrow instance. The abstract arrow instance realizes a tree-shape analysis

for Stratego. We compositionally proved this analysis sound by verifying 27 smaller and individually

provable lemmas. Thus, our technique was applicable to this scenario (RQ1) and, as we argued, the

resulting proof is less complex and required less effort than a traditional proof (RQ2).

6.2 Control-Flow Analysis for PCF
We implemented an abstract interpreter for an analysis that has been widely studied in the litera-

ture [Midtgaard 2012]: control-flow analysis (CFA). We implemented this analysis for PCF [Plotkin

1977], a language with first-class functions, numbers, an ifZero construct, and fixpoint combinator
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data Val

= ClosureVal (Expr ,Env)

| NumVal Int

type Env = Map String Val

data V̂al = Top

| �ClosureVal (Set (Expr ,Ênv))

| �NumVal Interval

type Ênv = Map String Addr

type �Store = Map Addr V̂al

Fig. 7. Concrete (left) and abstract domain (right) for k-CFA analysis of PCF.

Y. The analysis we implemented is a k-CFA analysis [Shivers 1991] and the fixpoint algorithm we

used is due to Darais et al. [2017].

We briefly summarize how our analysis works. The analysis approximates functions (closures) as

sets of expression and environment pairs, while natural numbers are approximated using bounded

intervals. We ensure termination by employing Darais et al.’s fixpoint algorithm for big-step

semantics [2017]. Darais et al.’s fixpoint algorithm memoizes the results of all interpreter calls in a

cache. When the interpreter is called with the same expression and environment recursively or

repeatedly, it returns the cached result instead of recursing. This guarantees termination since

there are only finitely many environments to consider and the interpreter repeats itself eventually.

To finitely approximate environments, we adopt a common approach for (k-)CFA [Horn and Might

2010; Shivers 1991]: We allocate the values of an environment in an abstract store that has only

finitely many addresses available. There are only finitely many stores if all abstract values are finite

domains. For closures this is the case, because there only finitely many expressions that can be

evaluated for a given program. And our abstract domain for numbers is finite, because we restrict

the maximum bounds of intervals. If an interval exceeds theses bounds, it is approximated with

infinity. We summarize the concrete and abstract domain of the k-CFA interpreter in Figure 7.

Figure 8 shows the shared PCF interpreter and the interface that we developed for it. The interface

has a total of 16 operations: 4 value operations (class IsVal), 2 closure operations (IsClosure),
4 environment operations (ArrowEnv), a fixpoint operation (ArrowFix from Section 2.2), a failure

operation (ArrowFail), and 4 language independent arrow operations (Arrow, ArrowChoice). We

developed two instances of the interface: A concrete instance and a k-CFA instance. The code of

these instances can be found in the artifact of our paper and its accompanying documentation.

We compositionally proved the soundness of k-CFA instantiated interpreter relative to the

concrete instantiation of the interpreter. We decomposed the soundness proof into 16 lemmas, one

for each operation of the arrow type classes referenced by the shared interpreter. Soundness of all

pure arr expressions followed by parametricity of the meta-language Haskell (Theorem 5). As is

common in proofs by induction, often the induction hypothesis has to be strengthened such that

all cases of the induction are provable. We encountered this situation when proving soundness

of the environment operations in the ArrowEnv type class. We had to strengthen the soundness

proposition to guarantee that all environments passed in and out of the abstract arrow operation

are consistent with the abstract store, i.e., all environment-bound addresses exist in the store. Note

that this strengthened requirement of store consistency is not an artifact of using our techniques:

It is necessary for non-compositional soundness proof as well.

To assess the complexity of our proof, we compare it to another proof of a k-CFA for a PCF-like

language that can be found in the PhD thesis of Darais [2017]. The proof in Darais’ PhD thesis

relates in three theorems four different semantics, each proven by induction over derivations. It is

not obvious how the cases of the induction can be decomposed further systematically, because of

the differences between the concrete and abstract semantics. In comparison, our proof consists of

16 soundness lemmas that relate the concrete and abstract instances directly. The lemmas prove
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data Expr

= Var String | Lam String Expr

| App Expr Expr | Y Expr

| Zero | Succ Expr | Pred Expr

| IfZero Expr Expr Expr

class IsVal v c where

succ :: c v v

pred :: c v v

zero :: c () v

ifZero :: c x v -> c y v -> c (v,(x,y)) v

class IsClosure v env c where

closure :: c (Expr ,env) v

apply :: c ((Expr ,env),v) v -> c (v,v) v

class ArrowEnv var val env c where

lookup :: c var (Maybe val)

getEnv :: c () env

extendEnv :: c (var ,val ,env) env

localEnv :: c x y -> c (env ,x) y

class ArrowFail c where

fail :: c () x

apply ' ev = apply $

proc ((e,env),arg) -> case e of

Lam x body -> do

env ' <- extendEnv -< (x,arg ,env)

localEnv ev -< (env ', body)

Y e' -> do

fun ' <- localEnv ev -< (env , Y e')

apply ' ev -< (fun ',arg)

_ -> fail -< ()

eval ' :: (IsVal v c, IsClosure v env c,

ArrowChoice c, ArrowFix Expr v c,

ArrowEnv Text v env c, ArrowFail c)

=> c Expr v

eval ' = fix $ \ev -> proc e -> case e of

Var x -> do

m <- lookup -< x

case m of

Just v -> returnA -< v

Nothing -> fail -< ()

Lam x e -> do

env <- getEnv -< ()

closure -< (Lam x e, env)

App e1 e2 -> do

fun <- ev -< e1

arg <- ev -< e2

apply ' ev -< (fun , arg)

Zero -> zero -< ()

Succ e -> do

v <- ev -< e

succ -< v

Pred e -> do

v <- ev -< e

pred -< v

IfZero e1 e2 e3 -> do

v1 <- ev -< e1

ifZero ev ev -< (v1, (e2, e3))

Y e -> do

fun <- ev -< e

env <- getEnv -< ()

arg <- closure -< (Y e, env)

apply ' ev -< (fun , arg)

Fig. 8. Interface and shared interpreter for PCF.

smaller pieces of functionality than the induction cases in Darais’ proof. For example, the shared

interpreter in Figure 8 uses a helper function apply' to apply a closure value to an argument value.

Since we had proven the soundness of the language-independent arrow operations, the soundness

proof for the shared code in apply' decomposed into just 3 soundness lemmas about interface

operations: one for apply, the operation that unpacks a closure; one for extendEnv, the operation
that extends the environment with an argument value; and one for localEnv, the operation that

interprets under the extended environment. The functionality of apply' requires a manual proof

in Darais’ thesis, but in our setting, we get soundness of apply' for free because it is shared code

and is sound by Theorem 5. There are of course also commonalities between the proofs, most

significantly, we borrow the soundness lemma for fixpoints from Darais.

In summary, we developed a k-CFA analysis for PCF in our framework. We compositionally

proved this analysis sound by verifying 16 smaller and individually provable lemmas. Thus, our

techniques can be used to prove soundness of k-CFA, an interesting and widely studied static
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analysis (RQ1). As we argued, the resulting proof is less complex and required less effort than a

traditional proof (RQ2).

7 RELATEDWORK
Our work is a continuation of a long line of research on constructing and proving the soundness

of abstract interpreters. We have already related to many relevant sources throughout this paper.

Here, we discuss related work in more detail.

One of the main ideas of abstract interpretation is to systematically derive a sound static analysis
from a concrete semantics, by using the soundness proposition and proof as the guiding principle.

Cousot and Cousot [1979] pioneered the approach, which has since been extended to a wide range

of domains and semantic styles [Cousot 1999]. Such derivations enable soundness proofs that

follow a systematic sequence of derivation and proof steps. But these proof steps can be involved,

especially for interesting languages where one case of the abstract interpreter relates to many cases

of the concrete interpreter. The focus of our work is to minimize the effort and complexity involved

in proving soundness. We achieve this by factoring the concrete and abstract interpreter into a

shared implementation that is parameterized over an arrow-based interface. The abstract instance

of that interface can still be derived using techniques described by Cousot [1999]. However, in

our experience, a soundness proof after the definition is easier because the proof goal is clear and

progress can be made from either concrete and abstract side.

The idea of defining a language by implementing an interpreter in a meta-language (definitional

interpreters) was famously described by Reynolds [1998]. In the context of abstract interpreta-

tion, the idea was explored even earlier by Jones and Nielson [1994], who describe an approach

that translates expressions of the object language into expressions of a suitable meta-language.

Constructs of the meta-language then have two different interpretations, one that recovers to

the concrete semantics and one that recovers the abstract semantics of the object language. As

a reasoning principle for soundness, the authors define a logical relation [Plotkin 1980] over the

meta-language. The main benefit from using a logical relation is, soundness of all programs in the

meta-language follows from soundness lemmas for each meta-language construct. The logical rela-

tion has to be proven when the meta-language is created and maintained when the meta-language

changes. Compared to this paper, we use arrows as a meta-language and their induction principle

as reasoning tool for soundness. This induction principle is very similar to a logical relation as

it allows us to prove soundness of any arrow expression from soundness lemmas for each arrow

operation. However, the main benefit of this induction principle is that we do not need to prove or

maintain the induction principle itself. The induction principle follows for free from the fact that

we use arrows, which are a first order language and can be expressed by an algebraic datatype.

The topic of definitional abstract interpreters was also recently revisited by Darais et al. [2017].

They show that an abstract definitional interpreter inherits properties of the meta-language, such

as push-down control-flow precision. Similarly to our work, the concrete and abstract interpreter

that Darais et al. present share code, but over a monadic interface instead of one based on arrows.

Another similarity is that the abstract interpreters that we present can be regarded as definitional

abstract interpreters, since we are using a meta-language to define our interpreters. The main

difference between the work of Darais et al. is that we use a restricted meta-language (arrows), not

necessarily as a means to inherit functional properties, but as a means to making soundness proofs

compositional, which was not the focus of Darais et al.. We provide a generic theorem that ensures

the soundness of an arrow-based abstract interpreter based on the soundness lemmas of the arrow

operations, and we use parametricity to obtain soundness of embedded pure functions for free.

Monadic abstract interpreters by Sergey et al. [2013] show that concepts in static analysis such as

context-sensitivity, poly-variance, flow-sensitivity, etc. are independent of any particular language
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semantics and can be captured by an appropriate monad. These results carry over to our abstract

interpreters based on arrows, because every monad gives rise to a Kleisli arrow. Sergey et al.

describe their semantics using a shared monadic small-step abstract machine, but do not address

the question of how to prove soundness of monadic abstract interpreters. We address soundness in

this paper by factoring concrete and abstract interpreter into a shared big-step interpreter, which

enables compositional soundness proofs. The usage of arrows provides an induction principle,

which allowed us to ensure the soundness of the abstract interpreter by construction of sound

arrow operations. We expect that it is possible to define a small-step abstract machine in the style

of Sergey et al., but using arrows instead of monads in a way that our generic theorems apply.

Galois transformers and modular abstract interpreters by Darais et al. [2015] represent a system-

atic way to construct monadic abstract interpreters. Galois transformers are monad transformers,

whose monadic operations can be proven sound with respect to each other. While our technique

decomposes a soundness proof along operations of an interface, Galois transformers decompose a

soundness proof along a monad transformer stack. For example, the operations get for fetching and
put for writing state can be proven sound with respect to the concrete and abstract state monad

transformer, independent of the rest of the monad transformer stack. The technique described in

our paper and Galois transformers complement each other: Galois transformers still require a way

to compose the lemmas of operations to a proof of the interpreters, which we provide. And our

technique can benefit from decomposing the proof of soundness lemmas even further. In the future

we want to combine these two approaches by using arrow transformers to achieve an even larger

degree of proof decomposition.

Abstracting abstract machines (AAM) by Horn andMight [2010] is a technique for deriving sound

abstract interpreters from concrete language semantics described as abstract machines. The concrete

semantics is transformed in multiple steps to an abstract machine that is suitable to be approximated

by an abstract interpreter. Each step of the transformation is systematic and preserves soundness

with respect to the original concrete semantics. A consequence of this approach is that there must

be a one-to-one correspondence between transitions in the concrete and abstract semantics. As

we have discussed in Section 2, this is often not the case, for example, for ifZero over the interval
domain. In contrast, our approach only requires a one-to-one correspondence between concrete

and abstract arrow operations, but allows for a mismatch within these operations: An abstract

operation can distinguishm cases even if the corresponding concrete operation distinguishes n
cases.

Cousot et al. [2006] describe a different technique of soundness proof composition which is

orthogonal to ours: The technique is for composing separate abstract analyses by organizing them

in a hierarchy, such that analyses further down in the hierarchy can be influenced by the output

from analyses further up, but not the other way around. The focus of our paper is not on composing

different analyses, but rather on composing a soundness proof for a shared abstract interpreter from

reusable lemmas about the operations of the language being abstracted.

8 CONCLUSION
We have presented a novel technique for defining concrete and abstract interpreters by sharing

code over an interface based on arrows. Such interpreters can be proven sound compositionally:
Our Theorem 3 tells us how to compose such a proof, and reduces the effort of proving soundness

to the effort of proving a context-free soundness lemma for each interface operation and each

embedded pure function in the shared interpreter. Our Theorem 5 applies parametricity to obtain

the soundness of the embedded pure functions for free, which further reduces the proof effort. We

demonstrated the applicability of our technique by implementing two case study analyses and

proving them sound: a tree-shape analysis for Stratego and a k-CFA analysis for PCF. Compared
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to traditional soundness proofs abstract interpreters, our soundness proofs are less complex and

require less effort because we were able to decompose large proof obligations into independent

soundness lemmas, from which the soundness of the abstract interpreters follows by construction.

In the future, we want to investigate how our technique scales to even more complicated languages

and analyses.

A DESUGARING OF ARROW PRETTY NOTATION
TheHaskell standard library defines arrow operations in type classesCategory,Arrow, andArrowChoice.
We show the code of these type classes in Figure 9a.

3
Arrow pretty notation [Paterson 2001] pro-

vides a simpler notation for arrows in the style of the do-notation of monads. We show the EBNF

grammar of Paterson’s arrow pretty notation in Figure 9b. Arrow pretty notation desugars to the

arrow operations of Category, Arrow, and ArrowChoice.

class Category c where

id :: c x x

(.) :: c y z -> c x y -> c x z

f >>> g = g . f

class Category c => Arrow c where

arr :: (x -> y) -> c x y

(***) :: c x y -> c u v ->

c (x,u) (y,v)

(&&&) :: c x y -> c x z ->

c x (y,z)

class ArrowChoice c where

(+++) :: c x y -> c u v ->

c (Either x u) (Either y v)

(|||) :: c x z -> c y z ->

c (Either x y) z

(a) Arrow type classes in Haskell

expr ::= . . .

| proc pat -> cmd

cmd ::= expr -< expr

| form expr cmd1 . . . cmdn
| cmd1 op cmd2
| κ pat -> cmd

| (cmd)

| do { stmt1; . . . ; stmtn; cmd }

| case expr of
pat1 -> expr1
. . .
patn -> exprn

stmt ::= cmd

| pat <- cmd

| rec {stmt1; . . . l stmtn }

(b) Arrow pretty notation

Fig. 9. Arrow type classes (left) and arrow pretty notation (right).

For example, mapAmaps an effectful arrow computation f over a list of values.

mapA :: ArrowChoice c => c x y -> c [x] [y]

mapA f = proc l -> case l of

[] -> returnA -< []

(x:xs) -> do

y <- f -< x

ys <- mapA f -< xs

returnA -< y:ys

3
Their original definition is available here https://hackage.haskell.org/package/base/docs/Control-Arrow.html
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It desugars to arrow expressions as follows:

mapA :: ArrowChoice c => c x y -> c [x] [y]

mapA f = arr (\l -> case l of

[] -> Left ()

(x:xs) -> Right (x,xs))

>>>

( (arr (\() -> [])) |||

(f *** mapA f >>> arr (\(y,ys) -> (y:ys)) )

The first arrow expression arr embeds a pure function into an arrow computation that destructs

a list into an Either type. The result is then passed with >>> to a computation ||| that encodes
the two branches of the case distinction from before. The left branch of ||| encodes the first case
and returns the empty list. The right branch applies f and mapA f with *** to the first and second

component of the input tuple respectively, containing the first element and rest of the list. The

outputs of f and mapA f are collected in a tuple and the last arr expression constructs the output

list from its components.
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